【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍;
(2)設(shè),證明: 在上的最小值為定值.
【答案】(1);(2)定值
【解析】試題分析:(1)函數(shù)的圖象與軸相切可得。所以, ,對分類討論可得①當時, 無極值;②當時, 在處取得極小值;③當時, 在上無極小值。綜上得當當時, 在上有極小值,解得。(2),所以 ,令,則,分析可得,故在上遞增,因此,所以當時, 單調(diào)遞減;當時, 單調(diào)遞增。故為定值。
試題解析:
(1)解:∵,
∴令得,
由題意可得,∴ .
∴,
∴,
①當,即時, 無極值.
②當,即時,
令得;
令得或,
∴ 當時, 有極小值.
③當,即時, 在上無極小值。
綜上可得當時, 在上有極小值,且極小值為,
即.
∵,
∴,
解得 ,
又,
∴。
∴ 實數(shù)的取值范圍為。
(2)證明:由條件得,
,
設(shè),
則,
∵,∴ ,
又,
∴,
∴,
∴在上遞增,
∴.
由得;由得.
∴當時, 單調(diào)遞減;當時, 單調(diào)遞增。
∴ 當時, 有極小值,也為最小值,且為定值.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.設(shè)D,E分別為PA,AC中點.
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:BC⊥平面PAB;
(Ⅲ)試問在線段AB上是否存在點F,使得過三點 D,E,F(xiàn)的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點F的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值與最小值之和為12,則實數(shù)a的值為( )
A.
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標縮小到原來的 (縱坐標不變),再將所得到的圖象上所有點向左平移 個單位,所得函數(shù)圖象的解析式為( )
A.y=sin(2x﹣ )
B.y=sin(2x+ )
C.y=sin( x+ )
D.y=sin( x+ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) . (Ⅰ)求該函數(shù)的周期和最大值;
(Ⅱ)該函數(shù)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到y(tǒng)=sinx(x∈R)的圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.
(1)若函數(shù)在上的極小值不大于,求的取值范圍;
(2)設(shè)(),證明: 在上的最小值為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某學校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160)、第二組[160,165);…第八組[190,195],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)估計這所學校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖;
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為x、y,求滿足|x﹣y|≤5的事件概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com