(本小題14分) 已知函數(shù),若
(1)求曲線在點處的切線方程;
(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍;
(3)當
(1);(2)(1,] ;(3)證明詳見解析.

試題分析:(1)先求導數(shù),再求切線的斜率,由點斜式可得切線方程;(2)先求 ,然后確定函數(shù)
g(x)的單調區(qū)間,找到滿足函數(shù)在區(qū)間上有兩個零點d的條件,解之即可;(3)欲證原不等式可轉化為證,在構造函數(shù),由函數(shù)h(x)的單調性可證的<0,即可得證.
試題解析:(1)因為,
所以曲線在點處的切線方程為
(2)=,(x>0)
=,由>0得x>1, 由<0得0<x<1.
所以的單調遞增區(qū)間是(1,+),單調遞減區(qū)間(0, 1)
x=1時,取得極小值.
因為函數(shù)在區(qū)間 上有兩個零點,所以 ,解得
所以b的取值范圍是(1,
(3)當
即證:
即證:
構造函數(shù):
時,
所以,
,所以

所以
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),在其圖象上點(,)處的切線方程為,則圖象上點(-,)處的切線方程為________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若冪函數(shù)的圖像經(jīng)過點,則它在點處的切線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=,若| f(x)|≥ax,則a的取值范圍是(   )
A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在曲線上,為曲線在點處的切線的傾斜角,則的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線在點處的切線為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則當兩個函數(shù)圖象有且只有一個公共點時,__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P、Q分別為函數(shù)y=ln(x—1)+1和y=+1圖像上的動點,O為坐標原點,當1PQ1最小時,直線OQ交函數(shù)y=+1的圖像于點R(,)(異于Q點),則
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在x=1處取極值,則m=                        

查看答案和解析>>

同步練習冊答案