【題目】已知橢圓的長軸長為4,且短軸長是長軸長的一半.
(1)求橢圓的方程;
(2)經(jīng)過點作直線,交橢圓于,兩點.如果恰好是線段的中點,求直線的方程.
【答案】(1);(2).
【解析】
(1)根據(jù)題意,由橢圓的幾何性質分析可得a、b的值,將a、b的值代入橢圓方程即可得答案;
(2)根據(jù)題意,設直線l的方程為:,將直線與橢圓的方程聯(lián)立,分析可得,設A(x1,y1),B(x2,y2),由根與系數(shù)的關系以及中點坐標公式分析可得,解可得k的值,代入直線方程即可得答案.
(1)根據(jù)題意,橢圓的長軸長為4,且短軸長是長軸長的一半.
即,則,
,則,
故橢圓的方程為;
(2)由(1)得故橢圓的方程為:,設直線l的方程為:,
將直線代入橢圓方程,得,
設,,則,
恰好是線段的中點,,即,
解得,
則直線的方程為,變形可得.
科目:高中數(shù)學 來源: 題型:
【題目】已知為定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根、(),稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)已知為給定實數(shù),求的表達式;
(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當a=1時,求f(x)≤3的解集;
(2)當x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):
(1)直線l與垂直;
(2)l在x軸、y軸上的截距之和等于0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當時,恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)的導函數(shù)的圖象如圖所示,則以下關于函數(shù)的判斷:
①在區(qū)間內(nèi)單調(diào)遞增;
②在區(qū)間內(nèi)單調(diào)遞減;
③在區(qū)間內(nèi)單調(diào)遞增;
④是極小值點;
⑤是極大值點.
其中正確的是( )
A. ③⑤B. ②③C. ①④⑤D. ①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若k≠0,試討論函數(shù)f(x)的奇偶性,并說明理由;
(2)已知f(x)在(﹣∞,0]上單調(diào)遞減,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com