【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;

(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;

(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),

,

,,,則

但是,其中等號成立的條件是,于是矛盾,

所以,此三角形的面積不存在最大值.

以上解答是否正確?若不正確,請你給出正確的答案.

【答案】(1);(2)16;(3)見解析.

【解析】試題分析:

(1)由題意結(jié)合均值不等式的結(jié)論可得周長最小值為

(2)由題意得到面積函數(shù),結(jié)合均值不等式的結(jié)論可得即面積最大值為

(3)題中的解答存在問題,利用海倫公式三邊可互換進(jìn)行解答可得面積最大值為16.

試題解析:

(1)設(shè)兩直角邊為,斜邊為 ,

,即周長最小值為

(2)設(shè)夾的兩邊為,則第三邊,∴

,∴

,∴,即

,即面積最大值為

(3)不正確,∵海倫公式三邊可互換,

,此時(shí),面積最大值為16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線與直線)交于,兩點(diǎn).

1)當(dāng)時(shí),分別求在點(diǎn)處的切線方程;

2軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計(jì)

比較細(xì)心

45

比較粗心

合計(jì)

60

100

(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

處的切線與直線平行,求的值;

討論函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)遞減區(qū)間;

求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M建一座長為640米的大橋,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測算,兩端橋墩造價(jià)總共為100萬元,當(dāng)相鄰兩個(gè)橋墩的距離為米時(shí)(其中).中間每個(gè)橋墩的平均造價(jià)為萬元,橋面每1米長的平均造價(jià)為萬元.

(1)試將橋的總造價(jià)表示為的函數(shù);

(2)為使橋的總造價(jià)最低,試問這座大橋中間(兩端橋墩除外)應(yīng)建多少個(gè)橋墩?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)有如下結(jié)論:

①該函數(shù)為偶函數(shù);

②若,則;

③其單調(diào)遞增區(qū)間是;

④值域是

⑤該函數(shù)的圖象與直線有且只有一個(gè)公共點(diǎn).(本題中是自然對數(shù)的底數(shù))

其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)已知橢圓過點(diǎn),離心率為.

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)分別為橢圓的左、右焦點(diǎn),過的直線與橢圓交于不同兩點(diǎn),記的內(nèi)切圓的面積為,求當(dāng)取最大值時(shí)直線的方程,并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;

(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為性別與休閑方式有關(guān)系?

附:

查看答案和解析>>

同步練習(xí)冊答案