【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個(gè)內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點(diǎn).
(1)當(dāng)時(shí),分別求在點(diǎn)和處的切線方程;
(2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;
數(shù)學(xué)成績及格 | 數(shù)學(xué)成績不及格 | 合計(jì) | |
比較細(xì)心 | 45 | ||
比較粗心 | |||
合計(jì) | 60 | 100 |
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?
參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量的臨界值參考表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)若在處的切線與直線平行,求的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建一座長為640米的大橋,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測算,兩端橋墩造價(jià)總共為100萬元,當(dāng)相鄰兩個(gè)橋墩的距離為米時(shí)(其中).中間每個(gè)橋墩的平均造價(jià)為萬元,橋面每1米長的平均造價(jià)為萬元.
(1)試將橋的總造價(jià)表示為的函數(shù);
(2)為使橋的總造價(jià)最低,試問這座大橋中間(兩端橋墩除外)應(yīng)建多少個(gè)橋墩?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)有如下結(jié)論:
①該函數(shù)為偶函數(shù);
②若,則;
③其單調(diào)遞增區(qū)間是;
④值域是;
⑤該函數(shù)的圖象與直線有且只有一個(gè)公共點(diǎn).(本題中是自然對數(shù)的底數(shù))
其中正確的是__________.(請把正確結(jié)論的序號填在橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分15分)已知橢圓:過點(diǎn),離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)分別為橢圓的左、右焦點(diǎn),過的直線與橢圓交于不同兩點(diǎn),記的內(nèi)切圓的面積為,求當(dāng)取最大值時(shí)直線的方程,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為性別與休閑方式有關(guān)系?
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com