(本小題滿分14分)已知(,為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)在內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/1/18qez2.gif" style="vertical-align:middle;" />,那么稱,為閉函數(shù);
請(qǐng)解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分分)
如圖,點(diǎn)從點(diǎn)出發(fā),按著的速率沿著邊長(zhǎng)為正方形的邊運(yùn)動(dòng),到達(dá)點(diǎn)后停止,
求面積與時(shí)間的函數(shù)關(guān)系式并畫出函數(shù)圖像。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)已知集合是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立.
(1)試判斷函數(shù)是否屬于集合?請(qǐng)說(shuō)明理由;
(2)設(shè)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1) 用函數(shù)單調(diào)性的定義證明在區(qū)間上為增函數(shù)
(2) 解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題8分)若是定義在上的增函數(shù),且對(duì)一切滿足
(1)求 學(xué)科網(wǎng)
(2)若,解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若對(duì)任意的,恒成立,試求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知定義在區(qū)間(-1,1)上的函數(shù)f(x)既是奇函數(shù)又是減函數(shù),G(x)=f(1-x)+f(1-),
求G(x)<0的解
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d7/e/1hztz4.gif" style="vertical-align:middle;" />,對(duì)任意實(shí)數(shù),都有成立,且當(dāng)時(shí),有,試判斷函數(shù)的奇偶性和單調(diào)性,并證明你的結(jié)論
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com