(本小題滿分分)
如圖,點(diǎn)點(diǎn)出發(fā),按著的速率沿著邊長(zhǎng)為正方形的邊運(yùn)動(dòng),到達(dá)點(diǎn)后停止,

面積與時(shí)間的函數(shù)關(guān)系式并畫出函數(shù)圖像。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù).
(Ⅰ) 討論的奇偶性;
(Ⅱ)判斷上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)設(shè)函數(shù)y=x+ax+bx+c的圖像,如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為–4,

(1)求a、b、c的值;       
(2)求函數(shù)的遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù);
(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;
(2)當(dāng)時(shí),試用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在上是減函數(shù)。
(3)設(shè)常數(shù),求函數(shù)的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(15分)已知函數(shù)是偶函數(shù)[||]
(1) 求的值;
(2) 設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分) (1) 證明函數(shù) f(x)= 在上是增函數(shù);
⑵求上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知為此函數(shù)的定義域)同時(shí)滿足下列兩個(gè)條件:①函數(shù)內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/1/18qez2.gif" style="vertical-align:middle;" />,那么稱為閉函數(shù);
請(qǐng)解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間
(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/33/2/ec1q81.gif" style="vertical-align:middle;" />,當(dāng)時(shí),,且對(duì)任意的實(shí)數(shù),有
(Ⅰ)求,判斷并證明函數(shù)的單調(diào)性;
(Ⅱ)數(shù)列滿足,且
①求通項(xiàng)公式的表達(dá)式;
②令,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分.)
已知函數(shù),試判斷函數(shù)在(0,+∞)上的單調(diào)性,并加以證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案