已知函數(shù)的定義域為,對任意實數(shù),都有成立,且當時,有,試判斷函數(shù)的奇偶性和單調(diào)性,并證明你的結(jié)論

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知,為此函數(shù)的定義域)同時滿足下列兩個條件:①函數(shù)內(nèi)單調(diào)遞增或單調(diào)遞減;②如果存在區(qū)間,使函數(shù)在區(qū)間上的值域為,那么稱,為閉函數(shù);
請解答以下問題:
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
記函數(shù)的定義域為A, (<1) 的定義域為B.
(1) 求A;
(2) 若BA, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)判斷函數(shù)奇偶性,并給出證明;
(2)求函數(shù)的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知定義域為[0, 1]的函數(shù)fx)同時滿足:
①對于任意的x[0, 1],總有fx)≥0;
f(1)=1; 
③若0≤x1≤1, 0≤x2≤1, x1x2≤1, 則有fx1x2) ≥ fx1)+fx2).
(1)試求f(0)的值;
(2)試求函數(shù)fx)的最大值;
(3)試證明:當x, nN時,fx)<2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為奇函數(shù),當時,
的最小值為2.
(I)求函數(shù)的解析式
(Ⅱ)若,求證:
(Ⅲ) 若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
函數(shù).
(Ⅰ) 判斷函數(shù)的奇偶性,并求其最大值;
(Ⅱ) 求證:;
(Ⅲ) 求證:的圖象軸所圍成的圖形的面積不小于.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分.)
已知函數(shù),試判斷函數(shù)在(0,+∞)上的單調(diào)性,并加以證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在R上的單調(diào)函數(shù)f(x)滿足f(3)=log3且對任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求證f(x)為奇函數(shù);(2)若f(k·3)+f(3-9-2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.(12分)         

查看答案和解析>>

同步練習冊答案