已知函數(shù)為奇函數(shù),當時,
的最小值為2.
(I)求函數(shù)的解析式
(Ⅱ)若,求證:
(Ⅲ) 若且,求證:
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知是定義在上的奇函數(shù),且當時,.
(1)求在上的解析式;
(2) 證明在上是減函數(shù);
(3)當取何值時,在上有解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)的定義域為R,當x<0時,>1,且對任意的實數(shù)x,y∈R,有.
(1)求,判斷并證明函數(shù)的單調(diào)性;
(2)數(shù)列滿足,且,
①求通項公式;
②當時,不等式對不小于2的正整數(shù)
恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)
已知函數(shù)是定義在上的奇函數(shù),當時,
(1)判斷函數(shù)在區(qū)間上的單調(diào)性,并用單調(diào)性的定義證明;
(2)求函數(shù)在上的解析式;
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若函數(shù)y=loga(x2﹣ax+1)有最小值,則a的取值范圍是( 。
A.0<a<1 | B.0<a<2,a≠1 | C.1<a<2 | D.a(chǎn)≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域為,對任意實數(shù),都有成立,且當時,有,試判斷函數(shù)的奇偶性和單調(diào)性,并證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若f(x)=是奇函數(shù),且f(2)=.
(1)、求實數(shù)p、q的值;(2)判斷f(x)在(-∝,-1)的單調(diào)性,并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù)為定義在R上的奇函數(shù),且當時,,
(1) 求時的表達式;
(2) 若關(guān)于的方程有解,求實數(shù)的范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com