【題目】下列命題為真命題的是(

A.為真命題,則為真命題;

B.”是“”的充分不必要條件;

C.命題“若,則”的否命題為“若,則”;

D.已知命題,使得,則,使得。

【答案】B

【解析】

判斷出、的真假情況,可得出的真假,可判斷A選項(xiàng)中命題的正誤;解方程,可判斷出B選項(xiàng)中命題的正誤;利用否命題與原命題之間的關(guān)系可判斷出C選項(xiàng)中命題的正誤;由特稱命題的否定可判斷出D選項(xiàng)中命題的正誤.

對(duì)于A選項(xiàng),若為真命題,則、一真一假或兩個(gè)都是真命題,若、一真一假,則為假命題,A選項(xiàng)中的命題為假命題;

對(duì)于B選項(xiàng),解方程,得,所以,“”是

”的充分不必要條件,B選項(xiàng)中的命題為真命題;

對(duì)于C選項(xiàng),命題“若,則”的否命題為“若,則

”,C選項(xiàng)中的命題為假命題;

對(duì)于D選項(xiàng),由特稱命題的否定可知,,使得,D選項(xiàng)中的命題為假命題.故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線的兩條互相垂直的弦(點(diǎn)在第二象限),且交于點(diǎn),點(diǎn)軸上一點(diǎn),,其中為銳角

(1)設(shè)線段的長(zhǎng)為,將表示為關(guān)于的函數(shù)

(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時(shí)的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)上有最大值1,設(shè)

(1)求的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)的圖象經(jīng)過點(diǎn)在區(qū)間的最小值;

1)求函數(shù)的解析式;

2)求函數(shù)的最小值的表達(dá)式;

3)是否存在同時(shí)滿足以下條件:;②當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>;若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,BC邊上的高所在直線的方程為x+2y+3=0,∠A的平分線所在直線的方程為y=0,若點(diǎn)B的坐標(biāo)為(﹣1﹣2),分別求點(diǎn)A和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解全校學(xué)生本學(xué)期開學(xué)以來的課外閱讀時(shí)間,學(xué)校采用分層抽樣方法,從中抽取了100名學(xué)生進(jìn)行問卷調(diào)查.將樣本中的“初中學(xué)生”和“高中學(xué)生”,按學(xué)生的課外閱讀時(shí)間(單位:小時(shí))各分為5組:,,,,得其頻率分布直方圖如圖所示.

1)估計(jì)全校學(xué)生中課外閱讀時(shí)間在小時(shí)內(nèi)的總?cè)藬?shù)約是多少;

2)從全校課外閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,求至少有2個(gè)初中生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知拋物線的頂點(diǎn)為,與軸的交點(diǎn)為,則直線稱為拋物線的伴隨直線.

(1)求拋物線的伴隨直線的表達(dá)式;

(2)已知拋物線的伴隨直線為,且該拋物線與軸有兩個(gè)不同的公共點(diǎn),求的取值范圍.

(3)已知,若拋物線的伴隨直線為,且該拋物線與線段恰有1個(gè)公共點(diǎn),求的取值范圍(直接寫出答案即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,并在軸上方交雙曲線于點(diǎn),且.

(1)求雙曲線的方程;

(2)過雙曲線上一點(diǎn)作兩條漸近線的垂線,垂足分別是,試求的值;

(3)過圓上任意一點(diǎn)作切線交雙曲線兩個(gè)不同點(diǎn),中點(diǎn)為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)不完全統(tǒng)計(jì),某廠的生產(chǎn)原料耗費(fèi)(單位:百萬元)與銷售額(單位:百萬元)如下:

2

4

6

8

30

40

50

70

變量為線性相關(guān)關(guān)系.

1)求線性回歸方程必過的點(diǎn);

2)求線性回歸方程;

3)若實(shí)際銷售額要求不少于百萬元,則原材料耗費(fèi)至少要多少百萬元。

查看答案和解析>>

同步練習(xí)冊(cè)答案