已知
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49
照此規(guī)律,第五個(gè)等式應(yīng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
用數(shù)學(xué)歸納法證明:(n+1)+(n+2)+…+(n+n)=的第二步中,當(dāng)n=k+1時(shí)等式左邊與n=k時(shí)的等式左邊的差等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
數(shù)列的項(xiàng)是由1或2構(gòu)成,且首項(xiàng)為1,在第個(gè)1和第個(gè)1之間有個(gè)2,即數(shù)列為:1,2,1,2,2,2,1,2,2,2,2,2,1,…,記數(shù)列的前項(xiàng)和為,則 ; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
科拉茨是德國數(shù)學(xué)家,他在1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,一定可以得到1.如初始正整數(shù)為6,按照上述變換規(guī)則,我們可以得到一個(gè)數(shù)列:6,3,10,5,16,8,4,2,1.對(duì)于科拉茨猜想,目前誰也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:
(1)如果,則按照上述規(guī)則施行變換后的第8項(xiàng)為 .
(2)如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com