【題目】定義一個(gè)希望結(jié)合”()簡(jiǎn)稱如下:為一個(gè)非空集合,它滿足條件,則。試問:在集合中,一共有多少個(gè)希望子集合?請(qǐng)說明理由。

【答案】

【解析】

下面用“”表示的兩倍關(guān)系.注意到

顯然,是否在中不影響成為希望子集(因?yàn)檫@些數(shù)不能被整除,且每個(gè)數(shù)的兩倍均大于),所以,這個(gè)數(shù)的歸屬方案有種.

在①中,不能同時(shí)取,故有種方案.

同理,在②、③、④中,也各有種方案.

下面采用遞推算法.

在⑤中,若取,則不能取,此時(shí),可取亦可不取,有兩種方案:若不取,則由①知,關(guān)于,共有種方案(的情況與①相同).因此,在⑤中共有種方案.

同理,在⑥中共有種方案.

在⑦中,若取,則不能取,由①知關(guān)于,有種方案;若不取,則由⑤知,關(guān)于種方案.因此,在⑦中共有種方案.

在⑧中,若取,則不能取,由⑤知關(guān)于,有種方案;若不取,則由⑦知關(guān)于,有種方案.因此,在⑧中共有種方案.

再考慮到除去空集(即都不。虼怂蟮的希望子集的個(gè)數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的命題是(

A.以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是0.3

B.事件為必然事件,則事件是互為對(duì)立事件;

C.設(shè)隨機(jī)變量,若,則

D.甲、乙、丙、丁4個(gè)人到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件“4個(gè)人去的景點(diǎn)各不相同,事件甲獨(dú)自去一個(gè)景點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),)的圖像經(jīng)過點(diǎn),且關(guān)于直線對(duì)稱,則下列結(jié)論正確的是( )

A. 上是減函數(shù)

B. 函數(shù)的最小正周期為

C. 的解集是

D. 的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且離心率.

1)求橢圓的方程;

2)直線的斜率為,直線與橢圓交于兩點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過直線上的點(diǎn)作橢圓的切線,切點(diǎn)分別為,聯(lián)結(jié)

(1)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),證明直線恒過定點(diǎn);

(2)當(dāng)時(shí),定點(diǎn)平分線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】影片《紅海行動(dòng)》里的蛟龍突擊隊(duì)在奉命執(zhí)行撤僑過程中,海軍艦長(zhǎng)要求隊(duì)員們依次完成6項(xiàng)任務(wù),并對(duì)任務(wù)的順序提出了如下要求:重點(diǎn)任務(wù)A必須排在第2位,且任務(wù)E、F必須排在一起,則這6項(xiàng)任務(wù)的不同安排方案共有(

A.18B.36C.144D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , , 相交于點(diǎn),四邊形為直角梯形, , ,平面底面.

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試求所有的正數(shù) ,使得在雙曲線的右支上總存在焦點(diǎn)弦,它關(guān)于原點(diǎn)的張角為直角。

查看答案和解析>>

同步練習(xí)冊(cè)答案