如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF平面EFDC.
(Ⅰ) 當(dāng),是否在折疊后的AD上存在一點(diǎn),且,使得CP∥平面ABEF?若存在,求出的值;若不存在,說明理由;
(Ⅱ) 設(shè)BE=x,問當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.
(Ⅰ) (Ⅱ) x=3時(shí)有最大值,最大值為3
解析試題分析:(Ⅰ)存在使得滿足條件CP∥平面ABEF,且此時(shí). 2分
下面證明:
當(dāng)時(shí),即此時(shí),可知,過點(diǎn)作MP∥FD,與AF交于點(diǎn),則有
,又FD=,故MP=3,又因?yàn)镋C=3,MP∥FD∥EC,故有MPEC,故四邊形MPCE為平行四邊形,所以PC∥ME,又CP平面ABEF,ME平面ABEF,故有CP∥平面ABEF成立. 6分
(Ⅱ)因?yàn)槠矫鍭BEF平面EFDC,平面ABEF平面EFDC=EF,又AFEF,所以AF⊥平面EFDC.由已知BE=x,,所以AF=x(0x4),F(xiàn)D=6x.故.所以,當(dāng)x=3時(shí),有最大值,最大值為3. 12分
考點(diǎn):線面平行的判定及椎體的體積
點(diǎn)評:本題第一問求解時(shí)可采用空間向量法,以F為原點(diǎn)建立坐標(biāo)系,寫出點(diǎn)P的坐標(biāo)(用表示)通過直線的方向向量與平面的法向量垂直得到值即可求出點(diǎn)P的位置
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,,,設(shè)頂點(diǎn)在底面上的射影為.
(Ⅰ)求證:;
(Ⅱ)設(shè)點(diǎn)在棱上,且,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點(diǎn).
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱,,點(diǎn)M,N分別為和的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)若二面角A為直二面角,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖是三棱柱的三視圖,正(主)視圖和俯視圖都是矩形,側(cè)(左)視圖為等邊三角形,為的中點(diǎn).
(1)求證:∥平面;
(2)設(shè)垂直于,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在四棱錐中,底面是邊長為2的正方形,側(cè)棱平面,且,為底面對角線的交點(diǎn),分別為棱的中點(diǎn)
(1)求證://平面;
(2)求證:平面;
(3)求點(diǎn)到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面,.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com