【題目】下列說(shuō)法正確的是( )
A. 甲、乙二人比賽,甲勝的概率為,則比賽5場(chǎng),甲勝3場(chǎng)
B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個(gè)病人沒(méi)有治愈,則第10個(gè)病人一定治愈
C. 隨機(jī)試驗(yàn)的頻率與概率相等
D. 天氣預(yù)報(bào)中,預(yù)報(bào)明天降水概率為90%,是指降水的可能性是90%
【答案】D
【解析】
概率表示事件發(fā)生的可能性的大小,具有隨機(jī)性,頻率代表實(shí)驗(yàn)中事件實(shí)際發(fā)生的次數(shù)與試驗(yàn)總次數(shù)之比,為實(shí)際值,由此判斷即可.
A選項(xiàng),此概率只說(shuō)明發(fā)生的可能性大小,具有隨機(jī)性,并非一定是5場(chǎng)勝3場(chǎng);
B選項(xiàng),此治愈率只說(shuō)明發(fā)生的可能性大小,具有隨機(jī)性,并非10人一定有人治愈;
C選項(xiàng),試驗(yàn)的頻率可以估計(jì)概率,并不等于概率;
D選項(xiàng),概率為90%,即可能性為90%.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè),
(1)若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,直線平面,.
(1)求證:直線平面.
(2)若直線與平面所成的角的正弦值為,求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投資A、B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資量成正比例,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資量的算術(shù)平方根成正比例,其關(guān)系如圖2(注:利潤(rùn)與投資量的單位:萬(wàn)元).
(1)分別將A、B兩產(chǎn)品的利潤(rùn)表示為投資量的函數(shù)關(guān)系式;
(2)該公司已有10萬(wàn)元資金,并全部投入A、B兩種產(chǎn)品中,問(wèn):怎樣分配這10萬(wàn)元投資,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人都準(zhǔn)備于下午12:00-13:00之間到某車站乘某路公交車外出,設(shè)在12:00-13:00之間有四班該路公交車開(kāi)出,已知開(kāi)車時(shí)間分別為12:20,12:30,12:40,13:00,分別求他們?cè)谙率銮闆r下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達(dá)車站的時(shí)刻是等可能的(有車就乘).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時(shí)針?lè)较蚺帕,點(diǎn)A的極坐標(biāo)為( , ).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動(dòng),求|PB|2+|PC|2的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com