精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的兩個焦點分別為 ,且經過點.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)的頂點都在橢圓上,其中關于原點對稱,試問能否為正三角形?并說明理由.

【答案】(Ⅰ) ;(Ⅱ) 不可能為正三角形,理由見解析.

【解析】試題分析:

()設橢圓的標準方程為,依題意得,利用橢圓的定義可得則橢圓的標準方程為.

()為正三角形,則,

顯然直線的斜率存在且不為0,設方程為,聯立直線方程與橢圓方程可得, ,,同理可得.據此可得關于實數k的方程,方程無解,則不可能為正三角形.

試題解析:

()設橢圓的標準方程為,

依題意得,

,

所以,

故橢圓的標準方程為.

()為正三角形,則,

顯然直線的斜率存在且不為0,

方程為

的方程為,聯立方程,

解得, ,

所以,

同理可得.

,所以,

化簡得無實數解,

所以不可能為正三角形.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓C: +y2=1與直線l:y=kx+m相交于E、F兩不同點,且直線l與圓O:x2+y2= 相切于點W(O為坐標原點).
(1)證明:OE⊥OF;
(2)設λ= ,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的右準線方程為,又離心率為,橢圓的左頂點為,上頂點為,點為橢圓上異于任意一點.

(1)求橢圓的方程;

(2)若直線軸交于點,直線軸交于點,求證: 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為圓上的動點, 的坐標為, 在線段的中點.

(Ⅰ)求的軌跡的方程.

(Ⅱ)過點的直線交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中, 兩兩垂直且相等,過的中點作平面,且分別交PB,PCM、N,交的延長線于

)求證: 平面;

)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經過點與點.

(1)求圓的方程;

(2)過點作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求

(2)當切線斜率不存在時,可知切線方程為.

當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設 線段的中點為,∵,

∴線段的垂直平分線為,與聯立得交點,

.

∴圓的方程為.

(2)當切線斜率不存在時,切線方程為.

當切線斜率存在時,設切線方程為,即,

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點睛本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.

型】解答
束】
20

【題目】某小型企業(yè)甲產品生產的投入成本(單位:萬元)與產品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關于的線性回歸方程;

2)根據(1)中的回歸方程,判斷該企業(yè)甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關公式 , .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學對男女學生是否喜愛古典音樂進行了一個調查,調查者對學校高三年級隨機抽取了100名學生,調查結果如表:

喜愛

不喜愛

總計

男學生

60

80

女學生

總計

70

30

附:K2=

P(K2≥k0

0.100

0.050

0.010

k0

2.706

3.841

6.635


(1)完成如表,并根據表中數據,判斷是否有95%的把握認為“男學生和女學生喜歡古典音樂的程度有差異”;
(2)從以上被調查的學生中以性別為依據采用分層抽樣的方式抽取10名學生,再從這10名學生中隨機抽取5名學生去某古典音樂會的現場觀看演出,求正好有X個男生去觀看演出的分布列及期望.

查看答案和解析>>

同步練習冊答案