【題目】已知焦點為的的拋物線:()與圓心在坐標(biāo)原點,半徑為的交于,兩點,且,,其中,,均為正實數(shù).
(1)求拋物線及的方程;
(2)設(shè)點為劣弧上任意一點,過作的切線交拋物線于,兩點,過,的直線,均于拋物線相切,且兩直線交于點,求點的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點,直線與(為坐標(biāo)原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間A為函數(shù)的一個“可等域區(qū)間”.給出下列四個函數(shù):①;②;③;④.其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,是上任意一點。
(1)求證:;
(2)當(dāng)面積的最小值是9時,在線段上是否存在點,使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點,=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中為常數(shù),是自然對數(shù)的底數(shù).
(1)設(shè),若函數(shù)在區(qū)間上有極值點,求實數(shù)的取值范圍;
(2)證明:當(dāng)時,恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(且)
(1)若函數(shù)存在零點,求實數(shù)的最小值;
(2)若函數(shù)有兩個零點分別是,且對于任意的時恒成立,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)個不全相等的正數(shù),,…,依次圍成一個圓圈.
(Ⅰ)設(shè),且,,,…,是公差為的等差數(shù)列,而,,,…,是公比為的等比數(shù)列,數(shù)列,,…,的前項和滿足,,求數(shù)列的通項公式;
(Ⅱ)設(shè),,若數(shù)列,,…,每項是其左右相鄰兩數(shù)平方的等比中項,求;
(Ⅲ)在(Ⅱ)的條件下,,求符合條件的的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用符號“”或“”填空:
(1)設(shè)A為所有亞洲國家組成的集合,則中國______________A,美國__________A,印度____________A,英國_____________A;
(2)若,則-1_____________A;
(3)若,則3________________B;
(4)若,則8_______________C,9.1____________C.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com