【題目】如圖,三棱錐的底面與圓錐的底面都在平面上,且過點,又的直徑,垂足為.設(shè)三棱錐的所有棱長都是1,圓錐的底面直徑與母線長也都是1,圓錐的底面直徑與母線長也都是1.求圓錐的頂點到三棱錐的三個側(cè)面的距離.

【答案】S到側(cè)面的距離與S到側(cè)面的距離都是,S到側(cè)面的距離

【解析】

先求S到側(cè)面的距離.

設(shè),連結(jié),則.,垂足為,則.可知在同一平面.設(shè)的交點為(如圖).

,垂足為,則的長度即為到側(cè)面的距離.

易知,,,

,得.

,

,得.

再求S到側(cè)面的距離.

連結(jié),并延長到,使(如上左圖).平面,且取,均在的同一側(cè).連結(jié),則,,在平面內(nèi).連結(jié),則.,垂足為K(如上右圖),則的長度為S到側(cè)面的距離.

易知.,則.

從而,.

.

.

中,

由對稱性知,S到側(cè)面的距離也是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角ABC中,內(nèi)角所對應(yīng)的邊分別為,且滿足:,,則的取值范圍是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖計算該種蔬果日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點值代表);

(2)該經(jīng)銷商某天購進(jìn)了250公斤這種蔬果,假設(shè)當(dāng)天的需求量為公斤,利潤為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于1750元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BCCD的中點,GEF的中點,現(xiàn)在沿AE、AFEF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( 。

A. 所在平面B. 所在平面

C. 所在平面D. 所在平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗公式計算所得弧田面積()平方米

C. 按照弓形的面積計算實際面積為()平方米

D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(不等式選講)

已知函數(shù)

(1)若,解不等式;

(2)若不等式在R上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的三條內(nèi)線段、交于點、用紅、藍(lán)兩種顏色對的三條邊線和三條內(nèi)線段染色,使同色的三線不交于一點.證明:在圖中所有的三角形中,至少存在兩個同色三角形,且它的各邊或延長線被另一線截得的兩線段之比的和大于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左、右焦點分別為,且點與橢圓C的上頂點構(gòu)成邊長為2的等邊三角形.

1)求橢圓C的方程;

2)已知直線l與橢圓C相切于點P,且分別與直線和直線相交于點.試判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上有21個點.證明:以這些點為端點組成的所有弧中,不超過120°的弧不少于100.

查看答案和解析>>

同步練習(xí)冊答案