【題目】某校為了了解高一,高二,高三這三個年級之間的學(xué)生打王者榮耀游戲的人數(shù)情況,擬從這三個年級中按人數(shù)比例抽取部分學(xué)生進(jìn)行調(diào)查,則最合理的抽樣方法是( )
A. 抽簽法 B. 系統(tǒng)抽樣法 C. 分層抽樣法 D. 隨機(jī)數(shù)法
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個有關(guān)算法的說法中,正確的是__________.(要求只填寫序號)
(1)算法的各個步驟是可逆的; (2)算法執(zhí)行后一定得到確定的結(jié)果;
(3)解決某類問題的算法不是唯一的; (4)算法一定在有限步內(nèi)結(jié)束.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2月11日至2月16日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日期 | 2月11日 | 2月12日 | 2月13日 | 2月14日 | 2月15日 | 2月16日 |
平均氣溫x(℃) | 10 | 11 | 13 | 12 | 8 | 6 |
飲料銷量y(杯) | 22 | 25 | 29 | 26 | 16 | 12 |
該小組的研究方案:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選的2組數(shù)據(jù)進(jìn)行檢驗.
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩天的概率;
(Ⅱ)若選取的是11日和16日的兩組數(shù)據(jù),請根據(jù)12日至15日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=x+,并判斷該小組所得線性回歸方程是否理想.(若由線性回歸方程得到的估計數(shù)據(jù)與所選的檢驗數(shù)據(jù)的誤差均不超過2杯,則認(rèn)為該方程是理想的)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,(為參數(shù),).
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)當(dāng)與有兩個公共點(diǎn)時,求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
(Ⅰ)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(Ⅱ)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5—7分鐘,乙每次解答一道幾何題所用的時間在6—8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在所有棱長都為的三棱柱中,側(cè)棱,點(diǎn)為棱的中點(diǎn).
(1)求證:∥平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE1∥平面FCC1;
(2)證明:平面D1AC⊥平面BB1C1C;
(3)求點(diǎn)D到平面D1AC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是平行四邊形,平面,,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程.
(Ⅰ)當(dāng)時,判斷直線與的關(guān)系;
(Ⅱ)當(dāng)上有且只有一點(diǎn)到直線的距離等于時,求上到直線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com