【題目】已知函數(shù)f(x)的定義域為R.當x<0時,f(x)=x3﹣1;當﹣1≤x≤1時,f(﹣x)=﹣f(x);當x> 時,f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
【答案】D
【解析】解:∵當x> 時,f(x+ )=f(x﹣ ), ∴當x> 時,f(x+1)=f(x),即周期為1.
∴f(6)=f(1),
∵當﹣1≤x≤1時,f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵當x<0時,f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
∴f(6)=2.
故選:D.
求得函數(shù)的周期為1,再利用當﹣1≤x≤1時,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),當x<0時,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出結論.;本題考查函數(shù)值的計算,考查函數(shù)的周期性,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據已知條件完成下面的22列聯(lián)表,并據此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的序號是__________________.(寫出所有正確的序號)
①正切函數(shù)在定義域內是增函數(shù);
②已知函數(shù)的最小正周期為,將的圖象向右平移個單位長度,所得圖象關于軸對稱,則的一個值可以是;
③若,則三點共線;④函數(shù)的最小值為;
⑤函數(shù)在上是增函數(shù),則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列{an}的前n項和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項公式;
(2)設,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(22x+1)+mx的圖象經過點 .
(Ⅰ)求m值并判斷的奇偶性;
(Ⅱ)設g(x)=log4(2x+x+a)f(x),若關于x的方程f(x)=g(x)在x∈[-2,2]上有且只有一個解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若曲線為曲線關于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a,b∈R,c∈[0,2π),若對于任意實數(shù)x都有2sin(3x﹣ )=asin(bx+c),則滿足條件的有序實數(shù)組(a,b,c)的組數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若存在實數(shù)使得關于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com