【題目】下列說法正確的序號(hào)是__________________.(寫出所有正確的序號(hào))

正切函數(shù)在定義域內(nèi)是增函數(shù);

已知函數(shù)的最小正周期為,的圖象向右平移個(gè)單位長(zhǎng)度,所得圖象關(guān)于軸對(duì)稱,的一個(gè)值可以是;

,三點(diǎn)共線;④函數(shù)的最小值為;

函數(shù)上是增函數(shù),的取值范圍是.

【答案】③⑤

【解析】

對(duì)每一個(gè)命題逐一判斷得解.

①正切函數(shù)內(nèi)是增函數(shù),所以該命題是錯(cuò)誤的;

②因?yàn)楹瘮?shù)的最小正周期為,所以w=2,所以的圖象向右平移個(gè)單位長(zhǎng)度得到

,所得圖象關(guān)于軸對(duì)稱,所以,所以的一個(gè)值不可以是,所以該命題是錯(cuò)誤的;

,因?yàn)?/span>,所以三點(diǎn)共線,所以該命題是正確的;

函數(shù)=,所以sinx=-1時(shí),y最小為-1,所以該命題是錯(cuò)誤的;

函數(shù)上是增函數(shù),,所以的取值范圍是.所以該命題是正確的.

故答案為:③⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)xax2b·ln x,曲線yf(x)P(1,0),且在P點(diǎn)處的切線斜率為2.

(1)a,b的值;

(2)證明:f(x)≤2x2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角對(duì)的邊分別為,已知.

)若,求的取值范圍;

)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P-ABCD中,ABCD為正方形,分別是線段的中點(diǎn).

求證:(1)BC∥平面EFG;

(2)平面EFG⊥平面PAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.35
B.20
C.18
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3-6x+5,x∈R.

(1)求函數(shù)f(x)的極值;(2)若關(guān)于x的方程f(x)=a有三個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且
(1)證明:sinAsinB=sinC;
(2)若 ,求tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)的圖象關(guān)于直線x=-對(duì)稱,且.

(1)求實(shí)數(shù)a,b的值;

(2)求函數(shù)在區(qū)間[-3,2]上的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案