【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長為1 260 m,經(jīng)測量,cos A=,cos C=

(1)求索道AB的長;

(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

答案】(1)1 040 m;(2);(3)

【解析】(1)在中,

因?yàn)閏os A=,cos C=,所以sin A=,sin C=

從而sin B=sin[π-(A+C)]=sin(A+C)

=sin Acos C+cos Asin C=

由正弦定理,可得

所以索道AB的長為1 040 m.

(2)假設(shè)乙出發(fā)t 分鐘后,甲、乙兩游客距離為d,

此時(shí),甲行走了(100+50t)m,乙距離A處130t m,

所以由余弦定理,得

因?yàn)?/span>,即0≤t≤8,所以當(dāng)分鐘時(shí),甲、乙兩游客距離最短.

(3)由正弦定理,

乙從B出發(fā)時(shí),甲已走了50×(2+8+1)=550(m),還需走710 m才能到達(dá)C.

設(shè)乙步行的速度為v m/min,

由題意得,解得,

所以為使兩位游客在C處互相等待的時(shí)間不超過3分鐘,乙步行的速度應(yīng)控制在(單位:m/min)范圍內(nèi).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車托運(yùn)重量為P(kg)的貨物時(shí),托運(yùn)每千米的費(fèi)用(單位)標(biāo)準(zhǔn)為

y=

試編寫一程序求行李托運(yùn)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式是

(1)判斷是否是數(shù)列項(xiàng);

(2)試判斷數(shù)列中的項(xiàng)是否都在區(qū)間內(nèi);

(3)試判斷在區(qū)間內(nèi)是否有無數(shù)列中的項(xiàng)?若有是第幾項(xiàng)?若沒有請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A={x|2x2﹣7x+3≤0},B={x||x|<a}
(1)當(dāng)a=2時(shí),求A∩B,A∪B;
(2)若(RA)∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm容器Ⅱ的兩底面對角線,的長分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水水深均為12cm現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))

(1)將放在容器Ⅰ中,的一端置于點(diǎn)A處另一端置于側(cè)棱上,沒入水中部分的長度;

(2)將放在容器Ⅱ中,的一端置于點(diǎn)E處,另一端置于側(cè)棱上,求沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x)的定義域?yàn)? . (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時(shí)對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014高考課標(biāo)2理數(shù)18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,

E為PD的中點(diǎn).

(Ⅰ)證明:PB∥平面AEC;

(Ⅱ)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.

查看答案和解析>>

同步練習(xí)冊答案