【題目】已知函數(shù)有兩個極值點, ,且,記點 .

(Ⅰ)求直線的方程;

(Ⅱ)證明:線段與曲線有且只有一個異于的公共點.

【答案】(1)(2)見解析

【解析】試題分析】(1)先求函數(shù)的極值點,再求兩極值點的坐標,運用直線的點斜式方程求出其方程;(2)依據(jù)題設(shè)條件先構(gòu)造函數(shù)將問題進行等價轉(zhuǎn)化,再借助導(dǎo)數(shù)的知識分析推證

(Ⅰ)令,解得,

在區(qū)間, 上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

, , ,即 ,

直線的方程為,化簡得.

(Ⅱ)設(shè) ,

則線段與曲線的公共點即在區(qū)間上的零點.

,解得 ,

在區(qū)間 上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

可得

,

在區(qū)間上有且僅有有一個零點.

時,有 上無零點;

時,有, 上無零點;

綜上, 在區(qū)間上有且僅有一個零點.

所以線段與曲線有且只有一個異于、的公共點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當四面體ABCD的體積最大時,求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列是關(guān)于函數(shù)yf(x),x∈[ab]的幾個命題:

①若x0∈[a,b]且滿足f(x0)=0,則(x0,0)是f(x)的一個零點;

②若x0f(x)在[a,b]上的零點,則可用二分法求x0的近似值;

③函數(shù)f(x)的零點是方程f(x)=0的根,但f(x)=0的根不一定是函數(shù)f(x)的零點;

④用二分法求方程的根時,得到的都是近似值.

那么以上敘述中,正確的個數(shù)為 (  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】沭陽縣某水果店銷售某種水果,經(jīng)市場調(diào)查,該水果每日的銷售量(單位:千克)與銷售價格近似滿足關(guān)系式,其中為常數(shù),已知銷售價格定為千克時,每日可銷售出該水果千克.

(1)求實數(shù)的值;

(2)若該水果的成本價格為千克,要使得該水果店每日銷售該水果獲得最大利潤,請你確定銷售價格的值,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購物抽獎活動中,假設(shè)某10張券中有一等獎1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有將;某顧客從此10張券中任取2張,求:

1)該顧客中獎的概率;

2)該顧客獲得的獎品總價值(元)的概率分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓=1(a>b>0)的左焦點為F,右頂點為A,拋物線y2 (a+c)x與橢圓交于B,C兩點,若四邊形ABFC是菱形,則橢圓的離心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為500元/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關(guān)系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;

(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為參加學(xué)校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學(xué)的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計,以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.

請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:

(1)求出的值;

(2)老師說:“小王的測試成績是全班同學(xué)成績的中位數(shù)”,那么小王的測試成績在什么范圍內(nèi)?

(3)若要從小明、小敏等五位成績優(yōu)秀的同學(xué)中隨機選取兩位參加競賽,請用:列表法或樹狀圖求出小明、小敏同時被選中的概率.(注:五位同學(xué)請用表示,其中小明為,小敏為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某種藥物預(yù)防禽流感的效果,進行動物家禽試驗,調(diào)查了100個樣本,統(tǒng)計結(jié)果為:服用藥的共有60個樣本,服用藥但患病的仍有20個樣本,沒有服用藥且未患病的有20個樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;

(2)請問能有多大把握認為藥物有效?

不得禽流感

得禽流感

總計

服藥

不服藥

總計

查看答案和解析>>

同步練習(xí)冊答案