【題目】為參加學校的“我愛古詩詞”知識競賽,小王所在班級組織了一次古詩詞知識測試,并將全班同學的分數(shù)(得分取正整數(shù),滿分為100分)進行統(tǒng)計,以下是根據(jù)這次測試成績制作的不完整的頻率分布表和頻率分布直方圖.
請根據(jù)以上頻率分布表和頻率分布直方圖,回答下列問題:
(1)求出的值;
(2)老師說:“小王的測試成績是全班同學成績的中位數(shù)”,那么小王的測試成績在什么范圍內(nèi)?
(3)若要從小明、小敏等五位成績優(yōu)秀的同學中隨機選取兩位參加競賽,請用:列表法或樹狀圖求出小明、小敏同時被選中的概率.(注:五位同學請用表示,其中小明為,小敏為)
【答案】(1) (2)(3)
【解析】試題分析:(1)先利用第1組的頻數(shù)除以它的頻率得到樣本容量,再計算出第4組的頻數(shù),則用樣本容量分別減去其它各組的頻數(shù)得到a的值,接著用第5組的頻數(shù)除一樣本容量得到b的值,用b的值除以組距10得到y的值,然后計算第2組的頻率,再把第2組的頻率除以組距得到x的值;
(2)根據(jù)中位數(shù)的定義求解;
(3)畫樹狀圖(五位同學請用A、B、C、D、E表示,其中小明為A,小敏為B)展示所有20種等可能的結果數(shù),再找出小明、小敏同時被選中的結果數(shù),然后根據(jù)概率公式求解
試題解析:
(1),
所以, , ,
(2)小王的測試成績在范圍內(nèi)
(3)畫樹狀圖為:(五位同學用表示,其中小明為,小敏為)
共有20種等可能的結果數(shù),其中小明、小敏同時被選中的結果數(shù)為2,
所以小明、小敏同時被選中的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.
(1)求k的取值范圍;
(2)若=12,其中O為坐標原點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)求下列函數(shù)的解析式:
(1)已知,求;
(2) 已知函數(shù)是一次函數(shù),且滿足關系式,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知右焦點為的橢圓過點,且橢圓關于直線對稱的圖形過坐標原點.
(1)求橢圓的方程;
(2)過點且不垂直于軸的直線與橢圓交于,兩點,點關于軸的對稱點為,證明:直線與軸的交點為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班級進行教學實驗,為了比較教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖如下圖:記成績不低于70分者為“成績優(yōu)良”.
(1)分別計算甲、乙兩班20個樣本中,化學分數(shù)前十的平均分,并大致判斷哪種教學方式的教學效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“成績優(yōu)良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:
獨立性檢驗臨界值表:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修44:坐標系與參數(shù)方程
在直角坐標系中,直線經(jīng)過點,其傾斜角為,在以原點為極點, 軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為.
(Ⅰ)若直線與曲線C有公共點,求的取值范圍;
(Ⅱ)設為曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:
使用智能手機 | 不使用智能手機 | 總計 | |
學習成績優(yōu)秀 | 4 | 8 | 12 |
學習成績不優(yōu)秀 | 16 | 2 | 18 |
總計 | 20 | 10 | 30 |
附表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
經(jīng)計算的觀測值為10,則下列選項正確的是( )
A. 有99.5%的把握認為使用智能手機對學習有影響
B. 有99.5%的把握認為使用智能手機對學習無影響
C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響
D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com