科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).
(1)求直線與雙曲線的表達(dá)式;
(2)過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點到直線的距離即為點到直線的垂線段的長.
(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點P是反比例函數(shù)y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=?若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線的頂點為點,與軸的負(fù)半軸交于點,直線交拋物線W于另一點,點的坐標(biāo)為.
(1)求直線的解析式;
(2)過點作軸,交軸于點,若平分,求拋物線W的解析式;
(3)若,將拋物線W向下平移個單位得到拋物線,如圖2,記拋物線的頂點為,與軸負(fù)半軸的交點為,與射線的交點為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.
(1)求證:DB平分∠ADC;
(2)若CD=9,tan∠ABE=,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中________,________,樣本成績的中位數(shù)落在證明見解析________范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是銳角的外接圓,是的切線,切點為,,連結(jié)交于,的平分線交于,連結(jié).下列結(jié)論:①平分;②連接,點為的外心;③;④若點,分別是和上的動點,則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=6,動點P從點A出發(fā),以每秒 個單位長度的速度沿線段AD運動,動點Q從點D出發(fā),以每秒2個單位長度的速度沿折線段D﹣O﹣C運動,已知P、Q同時開始移動,當(dāng)動點P到達(dá)D點時,P、Q同時停止運動.設(shè)運動時間為t秒.
(1)當(dāng)t=1秒時,求動點P、Q之間的距離;
(2)若動點P、Q之間的距離為4個單位長度,求t的值;
(3)若線段PQ的中點為M,在整個運動過程中;直接寫出點M運動路徑的長度為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為元件.試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是元時,每天的銷售量為件;銷售單價每上漲元,每天的銷售量就減少件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式.
(2)當(dāng)銷售單價定為多少元時,該文具每天的銷售利潤最大?最大利潤為多少元?
(3)商場的營銷部結(jié)合上述情況,提出了,兩種營銷方案:
方案:該文具的銷售單價高于進(jìn)價,但不超過元;
方案:每天銷售量不少于件,且每件文具的利潤至少為元.
請比較哪種方案的最大利潤更高,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經(jīng)過A、D兩點,交AC于點E,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結(jié)果保留π和根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com