科目: 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=44°,點D點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.
(1)求證:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度數;
(3)若△ACE的外心在其內部時,求∠BDA的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖由長為a,寬為b的矩形、(2m+1)個長為4,寬為1的小矩形(為正整數)和若干個小圓組成,其中小圓的直徑與小矩形的寬相等.
(1)當m=1時,a= ,b= ;
(2)當a=24時,求b的值;
(3)a的值能否等于30?請通過計算說明理由;
(4)直接寫出a與b的數量關系.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一節(jié)數學活動課上,王老師將本班學生身高數據(精確到1厘米)出示給大家,要求同學們各自獨立繪制一幅頻數分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經王老師批改,甲繪制的圖是正確的,乙在數據整理與繪圖過程中均有個別錯誤.
(1)寫出乙同學在數據整理或繪圖過程中的錯誤(寫出一個即可);
(2)甲同學在數據整理后若用扇形統(tǒng)計圖表示,則159.5﹣164.5這一部分所對應的扇形圓心角的度數為 ;
(3)該班學生的身高數據的中位數是 ;
(4)假設身高在169.5﹣174.5范圍的5名同學中,有2名女同學,班主任老師想在這5名同學中選出2名同學作為本班的正、副旗手,那么恰好選中一名男同學和一名女同學當正,副旗手的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正△ABC 的邊長為 2,頂點 B、C 在半徑為 的圓上,頂點 A在圓內,將正△ABC 繞點 B 逆時針旋轉,當點 A 第一次落在圓上時,則點 C 運動的路線長為 (結果保留π);若 A 點落在圓上記做第 1 次旋轉,將△ABC 繞點 A 逆時針旋轉,當點 C 第一次落在圓上記做第 2 次旋轉,再繞 C 將△ABC 逆時針旋轉,當點 B 第一次落在圓上,記做第 3 次旋轉……,若此旋轉下去,當△ABC 完成第 2017 次旋轉時,BC 邊共回到原來位置 次.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等邊△ABC的邊長為4,點O是△ABC的外心,∠FOG=120°.繞點O旋轉∠FOG,分別交線段AB、BC于D、E兩點.連接DE給出下列四個結論:①OD=OE;②S△ODE=S△BDE;③S四邊形ODBE=;④△BDE周長的最小值為6.上述結論中正確的個數是( )
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】超市有一種“喜之郎“果凍禮盒,內裝兩個上下倒置的果凍,果凍高為4cm,底面是個直徑為6cm的圓,軸截面可以近似地看作一個拋物線,為了節(jié)省成本,包裝應盡可能的小,這個包裝盒的長不計重合部分,兩個果凍之間沒有擠壓至少為
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將Rt△ABC平移到△A'B'C'的位置,其中∠C=90°使得點C'與△ABC的內心重合,已知AC=4,BC=3,則陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,如果某點的橫坐標與縱坐標的和為10,則稱此點為“合適點”例如,點(1,9),(﹣2019,2029)…都是“合適點”.
(1)求函數y=2x+1的圖象上的“合適點”的坐標;
(2)求二次函數y=x2﹣5x﹣2的圖象上的兩個“合適點”A,B之間線段的長;
(3)若二次函數y=ax2+4x+c的圖象上有且只有一個合適點”,其坐標為(4,6),求二次函數y=ax2+4x+c的表達式;
(4)我們將拋物線y=2(x﹣n)2﹣3在x軸下方的圖象記為G1,在x軸及x軸上方圖象記為G2,現將G1沿x軸向上翻折得到G3,圖象G2和圖象G3兩部分組成的記為G,當圖象G上恰有兩個“合適點”時,直接寫出n的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在ABCD中,對角線DB⊥AD,BC=3,BD=4.點P從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動(點P不與點A,B重合),點N為AP的中點,過點N作NM⊥AB交折線AD﹣DC于點M,以MN,NP為邊作矩形MNPQ.設點P運動的時間為t(s).
(1)求線段PQ的長;(用含t的代數式表示)
(2)求點Q落在BD上時t的值;
(3)設矩形MNPQ與△ABD重疊部分圖形的面積為S平方單位,當此重疊部分為四邊形時,求S與t之間的函數關系式;
(4)若點D關于直線AB的對稱點為點D',點B關于直線PQ的對稱點為點B',請直接寫出直線B'D'與ABCD各邊所在直線平行或垂直的所有t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】探究:如圖①,直線l1∥l2,點A、B在直線l1上,點C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長線上一點,BE>AB,正方形ABCD、正方形BEFG均在直線AB同側,求證:△DEG的面積是正方形BEFG面積的一半.
應用:如圖③,在一條直線上依次有點A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側,且點F、H分別是邊CG、BI的中點,若正方形CDEF的面積為l,則△AGI的面積為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com