相關習題
 0  364976  364984  364990  364994  365000  365002  365006  365012  365014  365020  365026  365030  365032  365036  365042  365044  365050  365054  365056  365060  365062  365066  365068  365070  365071  365072  365074  365075  365076  365078  365080  365084  365086  365090  365092  365096  365102  365104  365110  365114  365116  365120  365126  365132  365134  365140  365144  365146  365152  365156  365162  365170  366461 

科目: 來源: 題型:

【題目】富平因取富庶太平之意而得名,是華夏文明重要發(fā)祥地之一.某班舉行關于美麗的富平的演講活動.小明和小麗都想第一個演講,于是他們通過做游戲來決定誰第一個來演.講游戲規(guī)則是:在一個不透明的袋子中有一個黑球a和兩個白球b、c,(除顏色外其它均相同),小麗從袋子中摸出一個球,放回后攪勻,小明再從袋子中摸出一個球,若兩次摸到的球顏色相同,則小麗獲勝,否則小明獲勝,請你用樹狀圖或列表的方法分別求出小麗與小明獲勝的概率,并說明這個游戲規(guī)則對雙方公平嗎?

查看答案和解析>>

科目: 來源: 題型:

【題目】李師傅駕駛出租車勻速地從西安市送客到咸陽國際機場,全程約,設小汽車的行駛時間為 (單位:),行駛速度為(單位:),且全程速度限定為不超過.

1)求關于的函數表達式;

2)李師傅上午點駕駛小汽車從西安市出發(fā).需在分鐘后將乘客送達咸陽國際機場,求小汽車行駛速度.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O,AEBCCB延長線于E,CFAEAD延長線于點F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE=4,AD=5,求OE的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,ORtABC斜邊中點,AB=10,BC=6,M、NAC邊上,若OMNBOC,點M的對應點是O,則CM=______

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,AC相交于點O,NAO的中點,點MBC邊上,POD的中點,過點PPMBC于點M,交于點N′,則PN-MN′的值為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】問題發(fā)現:

1)如圖1,內接于半徑為4,若,則_______;

問題探究:

2)如圖2,四邊形內接于半徑為6,若,求四邊形的面積最大值;

解決問題

3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、處,其中點上,并在公園中修四條慢跑道,即圖中的線段、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,與軸交于點

1)求點、、的坐標;

2)若點軸的上方,以、為頂點的三角形與全等,平移這條拋物線,使平移后的拋物線經過點與點,請你寫出平移過程,并說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點在以為直徑的上,的平分線交于點,過點的平行線交的延長線于點.

1)求證:的切線;

2)若,,求的長度.

查看答案和解析>>

科目: 來源: 題型:

【題目】某中學準備舉辦一次演講比賽,每班限定兩人報名,初三(1)班的三位同學(兩位女生,一位男生)都想報名參加,班主任李老師設計了一個摸球游戲,利用已學過的概率知識來決定誰去參加比賽,游戲規(guī)則如下:在一個不透明的箱子里放3個大小質地完全相同的乒乓球,在這3個乒乓球上分別寫上、(每個字母分別代表一位同學,其中、分別代表兩位女生,代表男生),攪勻后,李老師從箱子里隨機摸出一個乒乓球,不放回,再次攪勻后隨機摸出第二個乒乓球,根據乒乓球上的字母決定誰去參加比賽。

1)求李老師第一次摸出的乒乓球代表男生的概率;

2)請用列表或畫樹狀圖的方法求恰好選定一名男生和一名女生參賽的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某果園有果樹80棵,現準備多種一些果樹提高果園產量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產量隨之降低,若該果園每棵果樹產果(千克),增種果樹(棵), 它們之間的函數關系如圖所示.

1)求之間的函數關系式;

2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

查看答案和解析>>

同步練習冊答案