相關習題
 0  364662  364670  364676  364680  364686  364688  364692  364698  364700  364706  364712  364716  364718  364722  364728  364730  364736  364740  364742  364746  364748  364752  364754  364756  364757  364758  364760  364761  364762  364764  364766  364770  364772  364776  364778  364782  364788  364790  364796  364800  364802  364806  364812  364818  364820  364826  364830  364832  364838  364842  364848  364856  366461 

科目: 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)的圖象與函數(shù)的圖象相交于點A,并與軸交于點C,SAOC=15.點D是線段AC上一點,CDAC=23

1)求的值;

2)求點D的坐標;

3)根據(jù)圖象,直接寫出當時不等式的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,A,B,C,點P為任意一點,已知PAPB,則線段PC的最大值為(

A.3B.5C.8D.10

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,點E是邊長為2的正方形ABCD的邊BC上的一動點(不與端點重合),將ABE沿AE翻折至AFE的位置,若CDF是等腰三角形,則BE=________

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=6,AB=10,一個三角形的直角頂點E是邊AB上的一動點,一直角邊過點D,另一直角邊與BC交于F,若AE=xBF=y,則y關于x的函數(shù)關系的圖象大致為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=5,AE平分∠BAD,交BCF,交DC延長線于E,則的值為(

A.B.C.D.2

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東55方向,距離燈塔2海里的點A處,如果海輪沿正南方向航行到燈塔的正東方向,海輪航行的距離AB長是(

A.2cos55o海里B.海里C.2sin55海里D.海里

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖:拋物線yx2+bx+c與直線y=﹣x1交于點A,B.其中點B的橫坐標為2.點Pmn)是線段AB上的動點.

1)求拋物線的表達式;

2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度lm的關系式,m為何值時,PQ最長?

3)在平角直角坐標系中,我們把橫、縱坐標都為整數(shù)的點稱為整點,記頂點都是整點的四邊形為整點四邊形,在(2)的情況下,在平面內(nèi)找出所有符合要求的整點R,使P、QBR為整點平行四邊形,請直接寫出整點R的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關系是   ;

②直線DG與直線BE之間的位置關系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,上述結(jié)論是否成立,并說明理由.

3)應用:在(2)的情況下,連接BG、DE,若AE1AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖①,在我國古建筑的大門上常常懸掛著巨大的匾額,圖②中的線段BC就是懸掛在墻壁AM上的某塊匾額的截面示意圖.已知BC1米,∠MBC37°.從水平地面點D處看點C,仰角∠ADC45°,從點E處看點B,仰角∠AEB53°,且DE2.4米,求匾額懸掛的高度AB的長.(參考數(shù)據(jù):sin37°≈,cos37°≈tan37°≈).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線y=﹣x22x+3.問:

1)該拋物線的頂點坐標是   ;

2)該函數(shù)與x軸的交點坐標是   ,   ,并在網(wǎng)格中畫出該函數(shù)的圖象;

3x取什么值時,拋物線在x軸上方?   

4)已知yt,t取什么值時與拋物線y=﹣x22x+3有兩個交點?

查看答案和解析>>

同步練習冊答案