【題目】如圖,點(diǎn)E是邊長為2的正方形ABCD的邊BC上的一動點(diǎn)(不與端點(diǎn)重合),將△ABE沿AE翻折至△AFE的位置,若△CDF是等腰三角形,則BE=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)與一次函數(shù),其中與的部分對應(yīng)值如下表:
(1)求,的值,并將表格補(bǔ)充完整;
(2)在直角坐標(biāo)系中,畫出一次函數(shù)和反比例函數(shù)的圖象;
(3)直接寫出不等式的解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,∠OAB=30°,B(2,0),OC⊥AB于點(diǎn)C,點(diǎn)C在反比例函數(shù)y=(k≠0)的圖象上.
(1)求該反比例函數(shù)解析式;
(2)若點(diǎn)D為反比例函數(shù)y=(k≠0)在第一象限的圖象上一點(diǎn),且∠DOC=30°,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0)、點(diǎn)B,與y軸交于點(diǎn)C,拋物線的對稱軸是直線x=1,連接BC、AC.
(1)求S△ABC(用含有a的代數(shù)式來表示);
(2)若S△ABC=6,求拋物線的解析式;
(3)在(2)的條件下,當(dāng)﹣1≤x≤m+1時,y的最大值是2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時,上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°,過點(diǎn)B作BE⊥BD,BE=BD,連接EC.
(1)求∠CAD+∠CBD的度數(shù);
(2)若,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD切⊙O于C點(diǎn),弦CF⊥AB于E點(diǎn),連結(jié)AC.
(1)求證:∠ACD=∠ACF;
(2)當(dāng)AD⊥CD,BE=2cm,CF=8cm,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)為了解學(xué)生對食堂工作的滿意程度,8年級2班數(shù)學(xué)興趣小組在全校甲、乙兩個班內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿意、一般、滿意、非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計(jì)圖.
請結(jié)合圖中信息,解決下列問題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù);
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù);
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為一般的4位同學(xué)中隨機(jī)選擇2位進(jìn)行回訪,已知4位同學(xué)中有2位來自甲班,另2位來自乙班,請用列表或用畫樹狀圖的方法求出選擇的同學(xué)均來自甲班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中我們經(jīng)歷了“確定函數(shù)的表達(dá),利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程,在畫函數(shù)圖象時,我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象.已知函數(shù)y=2﹣b的定義域?yàn)?/span>x≥﹣3,且當(dāng)x=0時y=2﹣2由此,請根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=2﹣b的圖象與性質(zhì)進(jìn)行如下探究:
(1)函數(shù)的解析式為: ;
(2)在給定的平面直角坐標(biāo)系xOy中,畫出該函數(shù)的圖象并寫出該函數(shù)的一條性質(zhì): ;
(3)結(jié)合你所畫的函數(shù)圖象與y=x+1的圖象,直接寫出不等式2﹣b≤x+1的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com