【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:m=n=0時,我們稱使得成立的一對數(shù)m,n相伴數(shù)對,記為(m,n).

(1)若(m,1)是相伴數(shù)對,則m=_____;

(2)(m,n)是相伴數(shù)對,則代數(shù)式m﹣[n+(6﹣12n﹣15m)]的值為_____

【答案】﹣3

【解析】

(1)利用新定義“相伴數(shù)對”列出算式,計算即可求出m的值;(2)利用新定義“相伴數(shù)對”列出關系式,原式去括號合并后代入計算即可求出值.

(1)根據(jù)題意得:,

去分母得:15m+10=6m+6,

移項合并得:9m=4,

解得:m=

(2)由題意得:,即,

整理得:15m+10n=6m+6n,即9m+4n=0,

則原式=mn3+6n+m=m+5n3= (9m+4n)3=3,

故答案為:(1) ;(2)3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹教育部關于中小學生“每天鍛煉一小時”的要求,某市教育局做了一次隨機抽樣調查,其內容是:(1)學生每天鍛煉時間是否達到1小時;(2)學生每天鍛煉時間未達到1小時的原因.隨機調查了600名學生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計圖和條形統(tǒng)計圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時間達到1小時的人數(shù)占被調查總人數(shù)的百分比是
每天鍛煉時間未達到1小時的人數(shù)占被調查總人數(shù)的百分比是;
每天鍛煉時間未達到1小時的人數(shù)為人,其中原因是“時間被擠占”的人數(shù)是人;
(2)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(3)若該市現(xiàn)有中小學生約27萬人,據(jù)此調查,可估計今年該市中小學生每天鍛煉未達到1小時的學生約有多少萬人?
(4)從這次接受調查的學生中,隨機抽取一名學生的“每天鍛煉一小時”的情況,回答內容為“時間被擠占”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小型企業(yè)實行工資與業(yè)績掛鉤制度,工人工資分為A、B、C、D四個檔次.小明對該企業(yè)三月份工人工資進行調查,并根據(jù)收集到的數(shù)據(jù),繪制了如下尚不完整的統(tǒng)計表與扇形統(tǒng)計圖.

根據(jù)上面提供的信息,回答下列問題:
(1)求該企業(yè)共有多少人?
(2)請將統(tǒng)計表補充完整;
(3)扇形統(tǒng)計圖中“C檔次”的扇形所對的圓心角是度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算與化簡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上兩點對應的數(shù)分別為,,且滿足;

的值;

若點以每秒個單位,點以每秒個單位的速度同時出發(fā)向右運動,多長時間后,兩點相距個單位長度?

已知向右出發(fā),速度為每秒一個單位長度,同時向右出發(fā),速度為每秒個單位長度,設的中點為,的值是否變化?若不變求其值;否則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車間有120名工人,為了了解這些工人日加工零件數(shù)的情況,隨機抽出其中的30名工人進行調查.整理調查結果,繪制出不完整的條形統(tǒng)計圖(如圖).根據(jù)圖中的信息,解答下列問題:
(1)在被調查的工人中,日加工9個零件的人數(shù)為名;
(2)在被調查的工人中,日加工12個零件的人數(shù)為名,日加工個零件的人數(shù)最多,日加工15個零件的人數(shù)占被調查人數(shù)的%;
(3)依據(jù)本次調查結果,估計該車間日人均加工零件數(shù)和日加工零件的總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中, 為坐標原點,點在反比例函數(shù)的圖象上,作軸于點.

(1)的面積為______;

(2)若點的橫坐標為4,點軸的正半軸,且是等腰三角形,求點的坐標;

(3)動點從原點出發(fā),沿軸的正方向運動,以為直角邊,在的右側作等腰, ;若在點運動過程中,斜邊始終在軸上,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】考試前,同學們總會采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對該校九年級的部分同學做了一次內容為“最適合自己的考前減壓方式”的調查活動,學校將減壓方式分為五類,同學們可根據(jù)自己的情況必選且只選其中一類.數(shù)據(jù)收集整理后,繪制了圖1和圖2兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

(1)請通過計算,補全條形統(tǒng)計圖;

(2)請直接寫出扇形統(tǒng)計圖中“享受美食”所對應圓心角的度數(shù)為  ;

(3)根據(jù)調查結果,可估計出該校九年級學生中減壓方式的眾數(shù)和中位數(shù)分別是  ,  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+3分別交x軸、y軸與C、A兩點,點Bx軸上一點,且橫坐標為2,OA上取一點H,使得OH=OB.

1求點C的坐標.

2CH所在直線的表達式.

3 若點P在直線CH上運動,是否存在一點P,使得PBC的面積是AHB面積的,若存在,求出點P的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案