【題目】如圖,PA切⊙于點A,OP交⊙O于點B,且點B為OP的中點,弦AC∥OP.若OP=2,則圖中陰影部分的面積為( )

A.
B.
C.
D.

【答案】C
【解析】解:連結(jié)OA、OC,如圖,

∵PA切⊙于點A,∴OA⊥PA,∴∠OAP=90°,
∵點B為OP的中點,∴OB=PB,∴OA= OP=1,
∴∠P=30°,∠POA=60°,
∵AC∥OP,∴∠OAC=∠POA=60°,
而OA=OC,∴△OAC為等邊三角形,∴∠AOC=60°,
∴圖中陰影部分的面積=S扇形AOC﹣S△AOC=
故選C.
【考點精析】關(guān)于本題考查的扇形面積計算公式,需要了解在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂總D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.
(結(jié)果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,盤錦市某中學(xué)九年級的一個數(shù)學(xué)興趣小組在本年級學(xué)生中進行“學(xué)生最常用的交流方式”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為四類:A.面對面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調(diào)查數(shù)據(jù)結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖:
(1)本次調(diào)查,一共調(diào)查了名同學(xué),其中C類女生有名,D類男生有名;
(2)若該年級有學(xué)生150名,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?
(3)在本次調(diào)查中以“C.短信與書信交流”為最常用交流方式的幾位同學(xué)中隨機抽取兩名同學(xué)參加盤錦市中學(xué)生書信節(jié)比賽,請用列舉法求所抽取的兩名同學(xué)都是男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABCD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達式.
(2)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y= (n為常數(shù)且n≠0)的圖象在第二象限交于點C.CD⊥x軸,垂足為D,若OB=2OA=3OD=6.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩函數(shù)圖象的另一個交點坐標;
(3)直接寫出不等式;kx+b≤ 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在弧BD上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.

(1)求證:CF⊥AB;
(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則下列函數(shù)圖象正確的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,A,B,C三點都在小方格的頂點上(每個小方格的邊長為1).

(1)在圖甲中畫一個以A,B,C為其中三個頂點的平行四邊形,并求出它的周長.

(2)在圖乙中畫一個經(jīng)過A,B,C三點的圓,并求出圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知點A(﹣1,0),B(﹣1,1),C(1,0),D(1,2),點P是坐標系內(nèi)一點,給出定義:若存在過點P的直線l與線段AB,CD都有公共點,則稱點P是線段AB,CD的“聯(lián)絡(luò)點”.現(xiàn)有點P(x,y)在直線y= x上,且它是線段AB,CD的“聯(lián)絡(luò)點”,則x的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案