【題目】如圖,矩形ABCD的邊分別與兩坐標軸平行,對角線AC經(jīng)過坐標原點,點D在反比例函數(shù) (x>0)的圖象上.若點B的坐標為(﹣4,﹣4),則k的值為( 。
A. 2 B. 6 C. 2或3 D. ﹣1或6
【答案】D
【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形DEOH=S四邊形FBGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2-5k+10=16,再解出k的值即可.
如圖:
∵四邊形ABCD、FAEO、OEDH、GOHC為矩形,
又∵AO為四邊形FAEO的對角線,OC為四邊形OGCH的對角線,
∴S△AEO=S△AFO,S△OHC=S△OGC,S△DAC=S△BCA,
∴S△DAC -S△AEO-S△OHC=S△BAC-S△AFO-S△OGC,
∴S四邊形FBGO=S四邊形DEOH=(-4)×(-4)=16,
∴xy=k2-5k+10=16,
解得k=-1或k=6.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l與⊙O相切于點A,作半徑OB并延長至點C,使得BC=OB,作CD⊥直線l于點D,連接BD得∠CBD=75°,則∠OCD=_____度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2-2ax+3(a≠0)的圖象與x、y軸交于A、B、C三點,其中AB=4,連接BC.
(1)求二次函數(shù)的對稱軸和函數(shù)表達式;
(2)若點M是線段BC上的動點,設點M的橫坐標為m,過點M作MN∥y軸交拋物線于點N,求線段MN的最大值.
(3)當0≤x≤t,則3≤y≤4,直接寫出t的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CE⊥AB于E,弦AD交CE延長線于點F,CF﹦AF.
(1)求證:;
(2)若BC=8,tan∠DAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)已知∠MAN=135°,正方形ABCD繞點A旋轉.
(1)當正方形ABCD旋轉到∠MAN的外部(頂點A除外)時,AM,AN分別與正方形ABCD的邊CB,CD的延長線交于點M,N,連接MN.
①如圖1,若BM=DN,則線段MN與BM+DN之間的數(shù)量關系是 ;
②如圖2,若BM≠DN,請判斷①中的數(shù)量關系是否仍成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖3,當正方形ABCD旋轉到∠MAN的內部(頂點A除外)時,AM,AN分別與直線BD交于點M,N,探究:以線段BM,MN,DN的長度為三邊長的三角形是何種三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的序號是___________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一司機駕駛汽車從甲地去乙地,以80千米/小時的平均速度用6小時到達目的地.
(1)當他按原路勻速返回時,求汽車速度v(千米/小時)與時間t(小時)之間的函數(shù)關系式;
(2)如果該司機勻速返回時,用了4.8小時,求返回時的速度;
(3)若返回時,司機全程走高速公路,且勻速行駛,根據(jù)規(guī)定:最高車速不得超過每小時120公里,最低車速不得低于每小時60公里,試問返程時間的范圍是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河流的兩岸,互相平行,河岸上有一排間隔為的電線桿,,…某人在河岸的處測得,然后沿河岸走了到達處,測得∠CBN=60°,求河流的寬度.(結果精確到)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com