【題目】如圖所示,在平面直角坐標(biāo)系xOy中,有AB為斜邊的等腰直角三角形ABC,其中點(diǎn)A(0,2),點(diǎn)C(﹣1,0),拋物線y=ax2+ax﹣2經(jīng)過(guò)B點(diǎn).
(1)求B點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否存在點(diǎn)N(點(diǎn)B除外),使得△ACN仍然是以AC為直角邊的等腰直角三角形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(﹣3,1) (2)y=x2+x﹣2 (3)見(jiàn)解析
【解析】
(1)根據(jù)題意,過(guò)點(diǎn)B作BD⊥x軸,垂足為D;根據(jù)角的互余的關(guān)系,易得B到x、y軸的距離,即B的坐標(biāo);
(2)根據(jù)拋物線過(guò)B點(diǎn)的坐標(biāo),可得a的值,進(jìn)而可得其解析式;
(3)首先假設(shè)存在,分A、C是直角頂點(diǎn)兩種情況討論,根據(jù)全等三角形的性質(zhì),可得答案.
解:(1)過(guò)點(diǎn)B作BD⊥x軸,垂足為D.
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴點(diǎn)B的坐標(biāo)為(﹣3,1);
(2)拋物線y=ax2+ax﹣2經(jīng)過(guò)點(diǎn)B(﹣3,1),
則得到1=9a﹣3a﹣2,
解得a=,
所以拋物線的解析式為y=x2+x﹣2;
(3)假設(shè)存在點(diǎn)N,使得△ACN仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);
則延長(zhǎng)BC至點(diǎn)N1,使得N1C=BC,得到等腰直角三角形△ACN1,
過(guò)點(diǎn)N1作N1M⊥x軸,
∵CN1=BC,∠MCN1=∠BCD,∠N1MC=∠BDC=90°,
∴△MN1C≌△DBC.
∴CM=CD=2,N1M=BD=1,可求得點(diǎn)N1(1,﹣1);
②若以點(diǎn)A為直角頂點(diǎn);
則過(guò)點(diǎn)A作AN2⊥CA,且使得AN2=AC,得到等腰直角三角形△ACN2,
過(guò)點(diǎn)N2作N2P⊥y軸,同理可證△AN2P≌△CAO,
∴NP2=OA=2,AP=OC=1,可求得點(diǎn)N2(2,1),
③以A為直角頂點(diǎn)的等腰Rt△ACN的頂點(diǎn)N有兩種情況.即過(guò)點(diǎn)A作直線L⊥AC,在直線L上截取AN=AC時(shí),點(diǎn)N可能在y軸右側(cè),即現(xiàn)在解答情況②的點(diǎn)N2;
點(diǎn)N也可能在y軸左側(cè),即還有第③種情況的點(diǎn)N3.因此,然后過(guò)N3作N3G⊥y軸于G,同理:△AGN3≌△CAO,
∴GN3=OA=2,AG=OC=1,
∴N3(﹣2,3);
經(jīng)檢驗(yàn),點(diǎn)N1(1,﹣1)與點(diǎn)N2(2,1)都在拋物線y=x2+x﹣2上,點(diǎn)N3(﹣2,3)不在拋物線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周老師家的紅心獼猴桃深受廣大顧客的喜愛(ài),獼猴桃成熟上市后,她記錄了15天的銷售數(shù)量和銷售單價(jià),其中銷售單價(jià)y(元/千克)與時(shí)間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時(shí)間第x天(x為整數(shù))的部分對(duì)應(yīng)值如下表所示:
時(shí)間第x天 | 1 | 3 | 5 | 7 | 10 | 11 | 12 | 15 |
日銷量P(千克) | 320 | 360 | 400 | 440 | 500 | 400 | 300 | 0 |
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)從你學(xué)過(guò)的函數(shù)中,選擇合適的函數(shù)類型刻畫(huà)P隨x的變化規(guī)律,請(qǐng)直接寫(xiě)出P與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在這15天中,哪一天銷售額達(dá)到最大,最大銷售額是多少元;
(4)周老師非常熱愛(ài)公益事業(yè),若在前5天,周老師決定每銷售1千克紅心獼猴桃就捐獻(xiàn)a元給“環(huán)保公益項(xiàng)目”,且希望每天的銷售額不低于2800元以維持各種開(kāi)支,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形ABC,O為△ABC內(nèi)一點(diǎn),連接OA,OB,OC,將△BAO繞點(diǎn)B旋轉(zhuǎn)至△BCM.
(1)依題意補(bǔ)全圖形;
(2)若OA= ,OB= ,OC=1,求∠OCM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD⊥BC垂足是D,AN是∠BAC的外角∠CAM的平分線,CE⊥AN,垂足是E,連接DE交AC于F.
(1)求證:四邊形ADCE為矩形;
(2)求證:DF∥AB,DF=;
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE為正方形,簡(jiǎn)述你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,);
②當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于;
③當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;
④當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過(guò)x軸上一個(gè)定點(diǎn).
其中正確的結(jié)論有________ .(只需填寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每月可賣出180件,如果該商品計(jì)劃漲價(jià)銷售,但每件售價(jià)不能高于35元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù))時(shí),月銷售利潤(rùn)為y元.
(1)分析數(shù)量關(guān)系填表:
每臺(tái)售價(jià)(元) | 30 | 31 | 32 | …… | 30+x |
月銷售量(件) | 180 | 170 | 160 | …… | _____ |
(2)求y與x之間的函數(shù)解析式和x的取值范圍
(3)當(dāng)售價(jià)x(元/件)定為多少時(shí),商場(chǎng)每月銷售這種商品所獲得的利潤(rùn)y(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,∠ADE=60°.
(1)求證:△ABD∽△DCE;
(2)如果AB=3,EC=,求DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過(guò)點(diǎn),與軸另一交點(diǎn)為,頂點(diǎn)為.
(1)求拋物線的解析式;
(2)在軸上找一點(diǎn),使的值最小,求的最小值;
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn),使得?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,AC與BD交于點(diǎn)O, N是AO的中點(diǎn),點(diǎn)M在BC邊上,且BM=3, P為對(duì)角線BD上一點(diǎn),當(dāng)對(duì)角線BD平分∠NPM時(shí),PM-PN值為( )
A.1B.C.2D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com