【題目】某籃球隊(duì)運(yùn)動員進(jìn)行3分球投籃成績測試,每人每天投3分球10次,對甲、乙兩名隊(duì)員在5天中進(jìn)球的個(gè)數(shù)統(tǒng)計(jì)如果如下:隊(duì)員每人每天進(jìn)球數(shù)(個(gè))經(jīng)過計(jì)算,甲進(jìn)球的平均數(shù)為x=8和方差S2=3.2.

1)求乙進(jìn)球的平均數(shù)x和方差S2;

2)現(xiàn)在需要根據(jù)以上數(shù)據(jù),從甲、乙二人中選出一人去參加3分球投籃大賽,你認(rèn)為應(yīng)該選哪名隊(duì)員?說說你的理由?

【答案】1x=8,S2=0.8;(2)乙成績穩(wěn),選乙合適,見解析.

【解析】

1)根據(jù)平均數(shù)、方差的計(jì)算公式計(jì)算即可;

2)根據(jù)方差越大,波動越大,成績越不穩(wěn)定;方差越小,波動越小,成績越穩(wěn)定進(jìn)行解答.

1x=(7+9+8+9+7)÷5=8

S2=[(7-8)2+(9-8)2+…+(9-8)2]÷5=0.8.

2)∵S2=3.2,S2=0.8

S2S2,

∴乙的波動小,

∴應(yīng)選乙去參加3分球投籃大賽.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問題:

提出問題

1)如圖1,在△ABC中,EBC的中點(diǎn),PAE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB900AC3,AB5.則CP=___;

探究規(guī)律

2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),PBE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長為_____;

3)在圖3中,AP是矩形ABCD的“雙中線”, 若AB4BC6,請仿照(2)中的方法求出AP的長,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰梯形ABCD中,ADBC,∠DBC=45°,翻折梯形ABCD,使點(diǎn)B重合于點(diǎn)D,折痕分別交邊AB、BC于點(diǎn)F、E,若AD=2,BC=8.(1)BE的長為_________. (2)CDE的正切值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知Rt△ABC,∠ABC=90°,頂點(diǎn)A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,將△ABC沿AC翻折得△ADC,點(diǎn)A和點(diǎn)D都在反比例函數(shù)y=的圖象上,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,AB=2cm,AC=4cm.動點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以1cm/s的速度向點(diǎn)B運(yùn)動,動點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),沿BA方向以1cm/s的速度向點(diǎn)A運(yùn)動.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動,以AP為一邊向上作正方形APDE,過點(diǎn)QQF∥BC,交AC于點(diǎn)F.設(shè)點(diǎn)P的運(yùn)動時(shí)間為ts,正方形和梯形重合部分的面積為Scm2

1)當(dāng)t= _________ s時(shí),點(diǎn)P與點(diǎn)Q重合;

2)當(dāng)t= _________ s時(shí),點(diǎn)DQF上;

3)當(dāng)點(diǎn)PQ,B兩點(diǎn)之間(不包括Q,B兩點(diǎn))時(shí),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動軌道,,兩門AB,CD的門軸A,B,C,D都在滑動軌道上,兩門關(guān)閉時(shí)圖2,A,D分別在E,F處,門縫忽略不計(jì)(即B,C重合);兩門同時(shí)開啟,A,D分別沿,的方向勻速滑動,帶動B,C滑動;B到達(dá)E時(shí),C恰好到達(dá)F,此時(shí)兩門完全開啟.已知.(1)如圖3,當(dāng)時(shí),______cm.(2)在(1)的基礎(chǔ)上,當(dāng)AM方向繼續(xù)滑動15cm時(shí),四邊形ABCD的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為A0,a),Bba),且a,b滿足(a32+|b6|0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移3個(gè)單位,再向左平移2個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接ACBD,AB

1)求點(diǎn)CD的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;

2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使SMCDS四邊形ABCD?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說明理由;

3)點(diǎn)P是直線BD上的一個(gè)動點(diǎn),連接PA,PO,當(dāng)點(diǎn)PBD上移動時(shí)(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點(diǎn)均為格點(diǎn).

(Ⅰ)線段的長度等于______;

(Ⅱ)若為線段上一點(diǎn),且滿足,請你借助無刻度直尺在給定的網(wǎng)格中面出滿足條件的線段,并簡要說明你是怎么畫出點(diǎn)______________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)都在格點(diǎn)上。

(Ⅰ)AC的長是_____________;

(Ⅱ)將四邊形折疊,使點(diǎn)C與點(diǎn)4重合,折痕EFBC于點(diǎn)E,交AD于點(diǎn)F,點(diǎn)D的對應(yīng)點(diǎn)為Q,得五邊形.請用無刻度的直尺在網(wǎng)格中畫出折疊后的五邊形,并簡要說明點(diǎn)的位置是如何找到的____________________.

查看答案和解析>>

同步練習(xí)冊答案