【題目】圖2、圖3是某公共汽車雙開門的俯視示意圖,ME,EF,FN是門軸的滑動軌道,,兩門AB,CD的門軸A,B,C,D都在滑動軌道上,兩門關(guān)閉時圖2,A,D分別在E,F處,門縫忽略不計(即B,C重合);兩門同時開啟,A,D分別沿,的方向勻速滑動,帶動B,C滑動;B到達E時,C恰好到達F,此時兩門完全開啟.已知.(1)如圖3,當(dāng)時,______cm.(2)在(1)的基礎(chǔ)上,當(dāng)A向M方向繼續(xù)滑動15cm時,四邊形ABCD的面積為______.
【答案】(1); (2)2256.
【解析】
(1)由已知可得B、C兩點的路程之比為5:4,再結(jié)合B運動的路程即可求出C運動的路程,相加即可求出BC的長;(2)當(dāng)A向M方向繼續(xù)滑動15cm時,AA'=15cm,由勾股定理和題目條件求出△A'EB'、△D'FC'和梯形A'EFD'邊長,即可利用割補法求出四邊形四邊形ABCD的面積.
∵A、D分別在E、F處,門縫忽略不計(即B、C重合)且AB=50cm,CD=40cm.
∴EF=50+40=90cm
∵B到達E時,C恰好到達F,此時兩門完全開啟,
∴B、C兩點的路程之比為5:4
(1)當(dāng)∠ABE=30°時,在Rt△ABE中,,
∴B運動的路程為(50﹣25)cm
∵B、C兩點的路程之比為5:4
∴此時點C運動的路程為 cm
∴BC=(50﹣25)+(40﹣20)=(90﹣45)cm
故答案為:90﹣45;
(2)當(dāng)A向M方向繼續(xù)滑動15cm時,設(shè)此時點A運動到了點A'處,點B、C、D分別運動到了點B'、C'、D'處,連接A'D',如圖:
則此時AA'=15cm
∴A'E=15+25=40cm
由勾股定理得:EB'=30cm,
∴B運動的路程為50﹣30=20cm
∴C運動的路程為16cm
∴C'F=40﹣16=24cm
由勾股定理得:D'F=32cm,
∴四邊形A'B'C'D'的面積=梯形A'EFD'的面積﹣△A'EB'的面積﹣△D'FC'的面積=×24×32=2556cm2.
∴四邊形ABCD的面積為2556cm2.
故答案為:2556.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,點C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為4,
①用尺規(guī)作出點A到CD所在直線的距離;
②求出該距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)∠BAE為多少度時,四邊形AECF是菱形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正n邊形繞點A順時針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點A逆時針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
(探究證明)
(1)請在圖1和圖2中選擇其中一個證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
(歸納猜想)
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;
(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,.點D,E分別在邊AB,BC上,將線段ED繞點E按逆時針方向旋轉(zhuǎn)90得到EF.
(1)如圖1,若,點E與點C重合,AF與DC相交于點O.求證:.
(2)已知點G為AF的中點.
①如圖2,若,求DG的長.
②若,是否存在點E,使得是直角三角形?若存在,求CE的長;若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“綠水青山就是金山銀山”,隨著生活水平的提高,人們對飲水品質(zhì)的需求越來越高.孝感市槐蔭公司根據(jù)市場需求代理、兩種型號的凈水器,每臺型凈水器比每臺型凈水器進價多200元,用5萬元購進型凈水器與用4.5萬元購進型凈水器的數(shù)量相等.
(1)求每臺型、型凈水器的進價各是多少元;
(2)槐蔭公司計劃購進、兩種型號的凈水器共50臺進行試銷,其中型凈水器為臺,購買資金不超過9.8萬元.試銷時型凈水器每臺售價2500元,型凈水器每臺售價2180元.槐蔭公司決定從銷售型凈水器的利潤中按每臺捐獻元作為公司幫扶貧困村飲水改造資金,設(shè)槐蔭公司售完50臺凈水器并捐獻扶貧資金后獲得的利潤為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.如圖,5×5正方形方格紙圖中,點A,B都在格點處.
(1)請在圖中作等腰△ABC,使其底邊AC=2,且點C為格點;
(2)在(1)的條件下,作出平行四邊形ABDC,且D為格點,并直接寫出平行四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年5月的第二個星期日即為母親節(jié),“父母恩深重,恩憐無歇時”,許多市民喜歡在母親節(jié)為母親送鮮花,感恩母親,祝福母親. 節(jié)日前夕,某花店采購了一批鮮花禮盒,成本價為30元每件,分析上一年母親節(jié)的鮮花禮盒銷售情況,得到了如下數(shù)據(jù),同時發(fā)現(xiàn)每天的銷售量(件)是銷售單價(元/件)的一次函數(shù).
銷售單價 (元/件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量 (件) | … | 350 | 300 | 250 | 200 | … |
(1)求出與的函數(shù)關(guān)系;
(2)物價局要求,銷售該鮮花禮盒獲得的利潤不得高于100﹪:
①當(dāng)銷售單價取何值時,該花店銷售鮮花禮盒每天獲得的利潤為5000元?(利潤=銷售總價-成本價);
②試確定銷售單價取何值時,花店銷該鮮花禮盒每天獲得的利潤(元)最大?并求出花店銷該鮮花禮盒每天獲得的最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com