【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)都在格點(diǎn)上。

(Ⅰ)AC的長(zhǎng)是_____________;

(Ⅱ)將四邊形折疊,使點(diǎn)C與點(diǎn)4重合,折痕EFBC于點(diǎn)E,交AD于點(diǎn)F,點(diǎn)D的對(duì)應(yīng)點(diǎn)為Q,得五邊形.請(qǐng)用無(wú)刻度的直尺在網(wǎng)格中畫(huà)出折疊后的五邊形,并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的____________________.

【答案】 如圖所示,取格點(diǎn)連接HO并延長(zhǎng)分別交AD,BC于點(diǎn)F,E,連接BN,DM相交于點(diǎn)Q,則點(diǎn)E,F,為所求.

【解析】

)根據(jù)勾股定理計(jì)算可得AC的長(zhǎng);

)如圖所示,取格點(diǎn)連接HO并延長(zhǎng)分別交AD,BC于點(diǎn)F,E,連接BN,DM相交于點(diǎn)Q,則點(diǎn)E,F,為所求.

解:()在Rt中,由勾股定理得:AC==,

)如圖所示

根據(jù)折疊的性質(zhì)折痕EF垂直平分AC,取AC的中點(diǎn)格點(diǎn)O,根據(jù)AC是直角邊長(zhǎng)分別為2,4的直角三角形的斜邊,要找過(guò)OAC垂直的直線(xiàn)需找過(guò)點(diǎn)O且直角邊長(zhǎng)分別為2,4的直角三角形的斜邊,取格點(diǎn)H,連接HO并延長(zhǎng)分別交ADBC于點(diǎn)F,E,則點(diǎn)E,F,為所求. 根據(jù)點(diǎn)D的對(duì)應(yīng)點(diǎn)為Q,可知點(diǎn)D和點(diǎn)Q得關(guān)于OH對(duì)稱(chēng),則OH垂直平分DQ,需QD//ACQF=DF,取格點(diǎn)M使AM=2=CD,連接DM可得DM//AC;根據(jù),可得DF=1.5,則PF=1.5,QF=1.5,則需 PQDQ,所以取點(diǎn)N連接BN即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)運(yùn)動(dòng)員進(jìn)行3分球投籃成績(jī)測(cè)試,每人每天投3分球10次,對(duì)甲、乙兩名隊(duì)員在5天中進(jìn)球的個(gè)數(shù)統(tǒng)計(jì)如果如下:隊(duì)員每人每天進(jìn)球數(shù)(個(gè))經(jīng)過(guò)計(jì)算,甲進(jìn)球的平均數(shù)為x=8和方差S2=3.2.

1)求乙進(jìn)球的平均數(shù)x和方差S2;

2)現(xiàn)在需要根據(jù)以上數(shù)據(jù),從甲、乙二人中選出一人去參加3分球投籃大賽,你認(rèn)為應(yīng)該選哪名隊(duì)員?說(shuō)說(shuō)你的理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市開(kāi)展美麗家鄉(xiāng),創(chuàng)衛(wèi)同行活動(dòng),某校倡議學(xué)生利用雙休日參加義務(wù)勞動(dòng),為了解同學(xué)們勞動(dòng)情況,學(xué)校隨機(jī)調(diào)查了部分同學(xué)的勞動(dòng)時(shí)間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值是

(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圖1,2,3中,已知,,點(diǎn)為線(xiàn)段上的動(dòng)點(diǎn),連接,以為邊向上作菱形,且

1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),________°

2)如圖2,連接

①填空:_________(填“>”,“<”,“=”);

②求證:點(diǎn)的平分線(xiàn)上;

3)如圖3,連接,,并延長(zhǎng)的延長(zhǎng)線(xiàn)于點(diǎn),當(dāng)四邊形是平行四邊形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點(diǎn)坐標(biāo)分別為,,.動(dòng)點(diǎn),同時(shí)從點(diǎn)出發(fā),沿,沿折線(xiàn),均以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng),當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止移動(dòng),移動(dòng)時(shí)間記為秒,連接.

(Ⅰ)如圖1,當(dāng)點(diǎn)移動(dòng)到中點(diǎn)時(shí),求此時(shí)的值及點(diǎn)坐標(biāo);

(Ⅱ)在移動(dòng)過(guò)程中,將沿直線(xiàn)翻折,點(diǎn)的對(duì)稱(chēng)點(diǎn)為.

①如圖2,當(dāng)點(diǎn)恰好落在邊上的點(diǎn)處時(shí),求此時(shí)的值;

②當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),點(diǎn)落在點(diǎn)處,求此時(shí)點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)bc為常數(shù))與x軸交于點(diǎn),與y軸交于點(diǎn)A,點(diǎn)E為拋物線(xiàn)頂點(diǎn)。

(Ⅰ)當(dāng)時(shí),求點(diǎn)A,點(diǎn)E的坐標(biāo);

(Ⅱ)若頂點(diǎn)E在直線(xiàn)上,當(dāng)點(diǎn)A位置最高時(shí),求拋物線(xiàn)的解析式;

(Ⅲ)若,當(dāng)滿(mǎn)足值最小時(shí),求b的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】居民區(qū)內(nèi)的“廣場(chǎng)舞”引起媒體關(guān)注,小王想了解本小區(qū)居民對(duì)“廣場(chǎng)舞”的看法,進(jìn)行一次分四個(gè)層次的抽樣調(diào)查(四個(gè)層次為:A,非常贊同;B.贊同但要有時(shí)間限制;C.無(wú)所謂;D.不贊同),并把調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的倍息解答下列問(wèn)題:

1)本次被抽查的居民人數(shù)是   人,將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)圖中∠α的度數(shù)是   度;該小區(qū)有3000名居民,請(qǐng)估計(jì)對(duì)“廣場(chǎng)舞”表示贊同(包括A層次和B層次)的大約有人

3)據(jù)了解,甲、乙、丙、丁四位居民投不贊同票,小王想從這四位居民中隨機(jī)選擇兩位了解具體情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答:

I)解不等式①,得_____________________;

(Ⅱ)解不等式②,得_________________________

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來(lái):

IV)原不等式組的解集為____________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)E,點(diǎn)G在直徑DF的延長(zhǎng)線(xiàn)上,∠D=G=30°.

(1)求證:CG是⊙O的切線(xiàn) (2)若CD=6,求GF的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案