【題目】如圖,在平面直角坐標(biāo)系中,每個小正方形網(wǎng)格的邊長為1,關(guān)于點(diǎn)成中心對稱.

1)畫出對稱中心,并寫出點(diǎn)的坐標(biāo)______

2)畫出繞點(diǎn)順時針旋轉(zhuǎn)后的;連接,可求得線段長為______

3)畫出與關(guān)于點(diǎn)成中心對稱的;連接、,則四邊形______;(填屬于哪一種特殊四邊形),它的面積是______

【答案】1)作圖見解析,;(2)作圖見解析,;(3)平行四邊形,20

【解析】

1)連接BB1、CC1,交點(diǎn)即為點(diǎn)E;
2)分別作出點(diǎn)A1B1、C1繞點(diǎn)O順時針旋轉(zhuǎn)90°后的對應(yīng)點(diǎn),順次連接起來得,連接,利用勾股定理,求解即可;
3)分別作出點(diǎn)A1、B1、C1關(guān)于點(diǎn)O成中心對稱的對應(yīng)點(diǎn),順次連接起來得,進(jìn)而即可求解.

1)連接BB1、CC1,交于點(diǎn)E(3,1),如圖所示:

故答案為:(31);

2)如圖所示,△A2B2C2即為所求作三角形,

故答案是:;

3)如圖所示:△A3B3C3即為所求作三角形,

關(guān)于原點(diǎn)中心對稱,

B1C1 =B3C3,B1C1B3C3,

∴四邊形是平行四邊形,

,

故答案是:平行四邊形,20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,E為邊上一點(diǎn),連結(jié)AE并延長交直線DC于F,且CE=CF.

(1)如圖1,求證:AF是∠BAD的平分線;

(2)如圖2,若∠ABC=90°,點(diǎn)G是線段EF上一點(diǎn),連接DG、BD、CG,若∠BDG=45°,求證:CG=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,ABACBCA=65°,作CDAB,并與O相交于點(diǎn)D連接BD,則∠DBC的大小為

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtOAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OAx軸重合,OAB=90°,OA=4AB=2,把RtOAB繞點(diǎn)O逆針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物找正好經(jīng)過點(diǎn)O,C,A三點(diǎn).

1)求該拋物線的解析式;

2)在x軸上方的拋物線上有一動點(diǎn)P,過點(diǎn)Px軸的平行線交拋物線于點(diǎn)D,分別過點(diǎn)P,點(diǎn)Dx軸的垂線,交x軸于R,S兩點(diǎn),問:四邊形PRSD的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.

3)如圖2,把點(diǎn)B向下平移兩個單位得到點(diǎn)T,過O,T兩點(diǎn)作Qx軸,y軸于E,F兩點(diǎn),若M、N分別為弧的中點(diǎn),作MGEF,NHEF,垂足為G、H,試求MG+NH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.

(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關(guān)系式;

(2)求出a的值;

(3)求張師傅途中加油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要從甲、乙兩名同學(xué)中挑選一人參加創(chuàng)新能力大賽,在最近的五次選拔測試中, 他倆的成績分別如下表,請根據(jù)表中數(shù)據(jù)解答下列問題:

第 1 次

第 2 次

第 3 次

第 4 次

第 5 次

平均分

眾數(shù)

中位數(shù)

方差

60 分

75 分

100 分

90 分

75 分

80 分

75 分

75 分

190

70 分

90 分

100 分

80 分

80 分

80 分

80 分

(1)把表格補(bǔ)充完整:

(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是多少;若將 80 分以上(含 80 分) 的成績視為優(yōu)秀,則甲、乙兩名同學(xué)在這五次測試中的優(yōu)秀率分別是多少;

(3)歷屆比賽表明,成績達(dá)到80分以上(含 80分)就很可能獲獎,成績達(dá)到 90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201988日至18日,第十八屆世警會首次來到亞洲在成都舉辦武侯區(qū)以相關(guān)事宜為契機(jī),進(jìn)一步改善區(qū)域生態(tài)環(huán)境.在天府吳園道部分地段種植白芙蓉和醉芙蓉兩種花卉.經(jīng)市場調(diào)查,種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示.

1)請直接寫出兩種花卉yx的函數(shù)關(guān)系式;

2)白芙蓉和醉芙蓉兩種花卉的種植面積共1000m2,若白芙蓉的種植面積不少于100m2且不超過醉芙蓉種植面積的3倍,那么應(yīng)該怎樣分配兩種花卉的種植面積才能使種植總費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD≌△CDB,且AB,CD是對應(yīng)邊.下面四個結(jié)論中不正確的是( )

A. ABD和△CDB的面積相等B. ABD和△CDB的周長相等

C. A+ABD=C+CBDD. ADBC,且AD=BC

查看答案和解析>>

同步練習(xí)冊答案