【題目】如圖,中,,,,邊上一點.

1)當時,直接寫出  ,  

2)如圖1,當,時,連并延長交延長線于,求證:

3)如圖2,連,當時,求的值.

【答案】1,;(2)證明見解析;(3

【解析】

1)利用相似三角形的判定可得,列出比例式即可求出結論;

2)作,設,則,根據(jù)平行線分線段成比例定理列出比例式即可求出AHEH,然后根據(jù)平行線分線段成比例定理列出比例式即可得出結論;

3)作,根據(jù)相似三角形的判定可得,列出比例式可得,設,,即可求出x的值,根據(jù)平行線分線段成比例定理求出,設,,,然后根據(jù)勾股定理求出AC,即可得出結論.

1)如圖1中,當時,

,,

,

,

,,

故答案為:,

2)如圖中,作

,

tanB=,tanACE= tanB=

BE=2CE

,,設,則

,

,

,

,

3)如圖2中,作

,

,

,

,

,

,

,

,設,,,

則有,

解得(舍棄),

,

,,,

,

,

,

,設,,

中,,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yax經(jīng)過點A42),點B在雙曲線yx0)的圖象上,連結OBAB,若∠ABO90°,BABO,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】老師留在小黑板上的題如圖所示.小彬說:該拋物線過點;小明說:;小穎說:該拋物線在軸上截得的線段長為.你認為三人的說法中,正確的有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+ca≠0)與x軸交于AB兩點,與y軸交于點C,點B和點C的坐標分別為(30)、(0,﹣3),拋物線的對稱軸為x1,D為拋物線的頂點.

1)求拋物線的解析式.

2)點E為線段BC上一動點,過點Ex軸的垂線,與拋物線交于點F,求四邊形ACFB面積的最大值,以及此時點E的坐標.

3)拋物線的對稱軸上是否存在一點P,使△PCD為等腰三角形?若存在,寫出點P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,,,點從點出發(fā)以的速度向點運動,點從點出發(fā)以的速度向點運動,、兩點同時出發(fā),其中一點到達終點時另一點也停止運動.若,當__時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,四邊形是邊長為2的正方形,,四邊形是邊長為的正方形,點分別在邊上,此時成立.

1)當正方形繞點逆時針旋轉,如圖②,成立嗎?若成立,請證明;若不成立,請說明理由;

2)當正方形繞點逆時針旋轉(任意角)時,仍成立嗎?直接回答;

3)連接,當正方形繞點逆時針旋轉時,是否存在,若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】童老師計劃購買A、B兩種筆記本共30本作為班會獎品,這兩種筆記本的單價分別是12元和8元,并且購買的A種筆記本的數(shù)量要少于B種筆記本數(shù)量的,但又不少于B種筆記本數(shù)量的.如果設買A種筆記本x本,買這兩種筆記本共花費y元.

1)求計劃購買這兩種筆記本所需的費用y(元)關于x(本)的函數(shù)關系式;

2)童老師有多少種不同的購買方案?

3)商店為了促銷,決定對A種筆記本每本讓利a4a≤7)元銷售,B種筆記本每本讓利b元銷售,童老師發(fā)現(xiàn)購買所需的總費用與購買的方案無關.當總費用最少時,求此時a、b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y.(其中mk0)圖象交于A(﹣4,2),B2,n)兩點.

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)求△ABO的面積;

3)請直接寫出當一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知RtOAB,OAB90,ABO30,斜邊OB4,將RtOAB繞點O順時針旋轉60,得到△COD,如圖1,連接BC

1)求BC的長度;

2)如圖2,點MN同時從點O出發(fā),在△OCB邊上運動,M沿OCB路徑勻速運動,N沿OBC路徑勻速運動,當兩點相遇時運動停止,已知點M的運動速度為1.5個單位/秒,點N的運動速度為1個單位/秒,設運動時間為x秒,△OMN的面積為y,求y關于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案