【題目】如圖,在平面直角坐標(biāo)系中,拋物線與直線交于A(1,1),B兩點(diǎn),與軸交于點(diǎn)C,直線與軸交于點(diǎn)D.
(1)求拋物線的對(duì)稱軸和點(diǎn)C的坐標(biāo);
(2)若在軸上有且只有一點(diǎn)P,使∠APB=90°,求的值;
(3)設(shè)直線與拋物線的對(duì)稱軸的交點(diǎn)為F,G是拋物線上位于對(duì)稱軸右側(cè)的一點(diǎn),若,且△BCG與△BCD的面積相等,求點(diǎn)G的坐標(biāo).
【答案】(1)對(duì)稱軸是x=2.5 , C的坐標(biāo)為(0,5);(2)k=;(3)點(diǎn)G的坐標(biāo)為(3,-1)或()
【解析】
(1)根據(jù)對(duì)稱軸公式即可求出對(duì)稱軸,根據(jù)常數(shù)項(xiàng)可得C點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)A作AK⊥x軸于點(diǎn)K,過(guò)B作BR⊥x軸于點(diǎn)R,設(shè)B(p,q),通過(guò)△AKP∽△PRB得到q=,然后根據(jù)q=p-5p+5可解得p1=2(舍去),p2=4,然后用待定系數(shù)法可求出k的值;
(3)過(guò)點(diǎn)A作AM⊥對(duì)稱軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥對(duì)稱軸于點(diǎn)N,構(gòu)造相似三角形求出B的坐標(biāo),從而得到直線AB與直線BD的解析式,求出點(diǎn)D坐標(biāo),設(shè)點(diǎn)D關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為D′,則 D′(0,),所以點(diǎn)G在過(guò)點(diǎn)D或D′,平行線于BC的直線上,然后聯(lián)立一次函數(shù)與拋物線的解析式即可求出符合題意的點(diǎn)G坐標(biāo)
解:(1)對(duì)稱軸是x=2.5
C的坐標(biāo)為(0,5)
(2)∵在x軸上有且僅有一點(diǎn)P,使∠APB=90,
∴以AB為直徑的圓與x軸相切,取AB中點(diǎn)Q,作QP⊥x軸,垂足為P,
過(guò)點(diǎn)A作AK⊥x軸于點(diǎn)K,過(guò)B作BR⊥x軸于點(diǎn)R,構(gòu)造“三垂直模型”
設(shè)B(p,q),則Q(,),
P(,0),K(1,0),R(p,0),
△AKP∽△PRB,AK∶RP=KP∶BR,
∴ 1∶(p-)=(-1)∶q,
化簡(jiǎn),得:q=,
∴2= p-5p+5,
解得:p1=2,p2=4;
當(dāng)p=2時(shí),q=<1,k<0,與題中條件k>0矛盾,
∴B(4,),代入直線l解析式:/p>
4k+m=;
又直線l過(guò)A(1,1),
∴k+m=1,
聯(lián)立方程組,解得:k=;
(3)過(guò)點(diǎn)A作AM⊥對(duì)稱軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥對(duì)稱軸于點(diǎn)N,
∵AF:FB=3:4,∴AM∶BN=3∶4,
∵AM=-1=,
∴BN=2,即點(diǎn)B的橫坐標(biāo)為2+=;
B的縱坐標(biāo)為:()-5×+5=,
∴B(,);
將A、B坐標(biāo)代入l解析式:
k+m=1;
+m=,
解得:k=,m=,
∴D(0,);
∴直線BC解析式為:+5;
設(shè)點(diǎn)D關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為D′,則 D′(0,),
∵△BCD和△BCG有公共邊BC,
∴點(diǎn)G在過(guò)點(diǎn)D或D′,平行線于BC的直線上,
分別作DG1∥BC,D′G2∥BC,G1、G2在拋物線上
DG 1解析式:y=+,與y= x-5x+5聯(lián)立,
解得:x1=,x2=3,
∵G在對(duì)稱軸右側(cè),
∴x=3,y=-1,
∴G1(3,-1);
D′G2解析式:y=+,與y= x-5x+5聯(lián)立,
解得:x1=,x2=(舍去),
∴x=,y=,
∴G2(,),
綜上所述,點(diǎn)G的坐標(biāo)為:(3,-1);或(,),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市迎接奧運(yùn)圣火的活動(dòng)中,某校教學(xué)樓上懸掛著宣傳條幅DC,小麗同學(xué)在點(diǎn)A處,測(cè)得條幅頂端D的仰角為30°,再向條幅方向前進(jìn)10米后,又在點(diǎn)B處測(cè)得條幅頂端D的仰角為45°,已知測(cè)點(diǎn)A.B和C離地面高度都為1.44米,求條幅頂端D點(diǎn)距離地面的高度
(計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù)≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 閱讀材料:如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=900,且點(diǎn)D 在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD。
解決問(wèn)題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如果不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為O,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫(xiě)出的值(用含α的式子表示出來(lái))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知矩形ABCD中,AB=cm,BC=3cm,點(diǎn)O在邊AD上,且AO=1cm.將矩形ABCD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(),得到矩形A′B′C′D′
(1)求證:AC⊥OB;
(2)如圖1, 當(dāng)B′落在AC上時(shí),求AA′;
(3)如圖2,求旋轉(zhuǎn)過(guò)程中△CC′D′的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖中畫(huà)出以線段AB為一邊的矩形ABCD(不是正方形),且點(diǎn)C和點(diǎn)D均在小正方形的頂點(diǎn)上;
(2)在圖中畫(huà)出以線段AB為一腰,底邊長(zhǎng)為的等腰三角形ABE,點(diǎn)E在小正方形的頂點(diǎn),則CE= ;
(3)F是邊AD上一動(dòng)點(diǎn),則CF+EF的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】長(zhǎng)城汽車銷售公司5月份銷售某種型號(hào)汽車,當(dāng)月該型號(hào)汽車的進(jìn)價(jià)為30萬(wàn)元/輛,若當(dāng)月銷售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬(wàn)元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車的銷售價(jià)為32萬(wàn)元/輛,公司計(jì)劃當(dāng)月銷售利潤(rùn)45萬(wàn)元,那么該月需售出多少輛汽車?(注:銷售利潤(rùn)=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,E是BC邊上的一個(gè)動(dòng)點(diǎn),DF⊥AE,垂足為點(diǎn)F,連結(jié)CF
(1)若AE=BC
①求證:△ABE≌△DFA;②求四邊形CDFE的周長(zhǎng);③求tan∠FCE的值;
(2)探究:當(dāng)BE為何值時(shí),△CDF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正八邊形各邊中點(diǎn)構(gòu)成四邊形,則正八邊形邊長(zhǎng)與AB的比是( )
A. 2﹣B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為考察甲、乙兩種農(nóng)作物的長(zhǎng)勢(shì),研究人員分別抽取了6株苗,測(cè)得它們的高度(單位:cm)如下:
甲:98,102,100,100,101,99;乙:100,103,101,97,100,99.
(1)你認(rèn)為哪種農(nóng)作物長(zhǎng)得高一些?說(shuō)明理由;
(2)你認(rèn)為哪種農(nóng)作物長(zhǎng)得更整齊一些?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com