【題目】如圖1,在平面直角坐標(biāo)系xoy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為弧AE的中點(diǎn),AE交y軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-1,0),AE=4
(1)求點(diǎn)C的坐標(biāo);
(2)連接MG、BC,求證:MG∥BC
【答案】(1)(0,4).(2)證明見解析.
【解析】
試題分析:(1)求C點(diǎn)的坐標(biāo),即求出OC的長(zhǎng).根據(jù)垂徑定理可得出弧CD=2弧AC,而題中已經(jīng)告訴了C是弧AE的中點(diǎn),即弧AE=2弧AC,即弧CD=弧AE,因此CD=AE,那么OC=AE=4,即可求出C點(diǎn)坐標(biāo);
(2)由于無法直接證明∠OMG=∠OBC來得出兩直線平行,因此可通過相似三角形來求解,可設(shè)出圓的半徑,然后分別求出OG、OM、OB的長(zhǎng),然后通過證OG、OM,OC、OB對(duì)應(yīng)成比例來得出△OMG與△OBC相似來得出∠OMG=∠OBC,進(jìn)行得出所求的結(jié)論.
試題解析:(1)∵直徑AB⊥CD,
∴CO=CD,,
∵C為的中點(diǎn),
∴,
∴,
∴CD=AE,
∴CO=CD=4,
∴C點(diǎn)的坐標(biāo)為(0,4).
(2)設(shè)半徑AM=CM=r,則OM=r-2,
由OC2+OM2=MC2得:
42+(r-2)2=r2,
解得:r=5,
∴OM=r-OA=3
∵∠AOC=∠ANM=90°,
∠EAM=∠MAE,
∴△AOG∽△ANM,
∴,
∵MN=OM=3,
即,
∴OG=
∵,,
∴,
∵∠BOC=∠BOC,
∴△GOM∽△COB,
∴∠GMO=∠CBO,
∴MG∥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為⊙O的直徑,A為⊙O上的點(diǎn),以BC、AB為邊作ABCD,⊙O交AD于點(diǎn)E,連結(jié)BE,點(diǎn)P為過點(diǎn)B的⊙O的切線上一點(diǎn),連結(jié)PE,且滿足∠PEA=∠ABE.
(1)求證:PB=PE;
(2)若sin∠P=, 求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合實(shí)踐課上,張老師讓同學(xué)們以“矩形的折疊”為主題開展數(shù)學(xué)活動(dòng),張老師拿著一張矩形紙片ABCD,其中AB=acm, AD=bcm, 如圖1,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E的位置,BE交AD于點(diǎn)F.
操作發(fā)現(xiàn):
(1)“奮進(jìn)”小組發(fā)現(xiàn)與BF的長(zhǎng)度一定相等的線段是哪一條;
(2)如圖2.“雄鷹”小組將圖1再折疊一次,使點(diǎn)D與點(diǎn)A重合,得到折痕GH,GH交AD于點(diǎn)M,發(fā)現(xiàn)△DGH是等腰三角形,請(qǐng)你證明這個(gè)結(jié)論;
實(shí)踐探究:
(3)“創(chuàng)新”小組將自己準(zhǔn)備的矩形紙片按照(2)中“雄鷹”小組的作法操作,發(fā)現(xiàn)點(diǎn)E和點(diǎn)G重合,,如圖3,試探究“創(chuàng)新”小組準(zhǔn)備的矩形紙片中a與b滿足的數(shù)量關(guān)系;
(4)”愛心”小組在其他小組的基礎(chǔ)上提出問題:當(dāng)a與b滿足什么關(guān)系時(shí),點(diǎn)G是DE的中點(diǎn)?請(qǐng)你直接出a與b滿足的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.
(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為 秒時(shí),△PAD的周長(zhǎng)最?當(dāng)t為 秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(2,0),(0,10),M是△AOB外接圓⊙C上的一點(diǎn),且∠AOM=30°,則點(diǎn)M的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.
(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN
①試說明:;
②若∠ABC=60°,AM=4,求點(diǎn)M到AD的距離.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABM和Rt△ADN的斜邊分別為正方形的邊AB和AD,其中AM=AN.
(1)求證:Rt△ABM≌Rt△AND
(2)線段MN與線段AD相交于T,若AT=,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線是同一平面內(nèi)的一組平行線.
(1)如圖1.正方形的4個(gè)頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn),點(diǎn)分別在直線和上,求正方形的面積;
(2)如圖2,正方形的4個(gè)頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為.
①求證:;
②設(shè)正方形的面積為,求證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣ 時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是________(填寫序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com