【題目】如圖,在平面直角坐標系中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=-x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標;若不存在,請說明理由.
【答案】(1)y=-x2-2x+3;(2).(3)M1(-2,3),M2(,),M3(,).
【解析】
試題分析:(1)將已知點的坐標代入二次函數的解析式利用待定系數法確定二次函數的解析式即可;
(2)首先根據△PFG是等腰直角三角形,設P(m,-m2-2m+3)得到F(m,m+3),進而得到PF=-m2-2m+3-m-3=-m2-3m,從而得到△PFG周長為:-m2-3m+(-m2-3m),配方后即可確定其最大值;
(3)當DM1∥AB,M3M2∥AB,且與AB距離相等時,根據同底等高可以確定△ABM與△ABD的面積相等,分別求得直線DM1解析式為:y=x+5和直線M3M2解析式為:y=x+1,聯立之后求得交點坐標即可.
試題解析:(1)∵直線AB:y=x+3與坐標軸交于A(-3,0)、B(0,3),
代入拋物線解析式y(tǒng)=-x2+bx+c中,得:
,
∴
∴拋物線解析式為:y=-x2-2x+3;
(2)∵由題意可知△PFG是等腰直角三角形,
設P(m,-m2-2m+3),
∴F(m,m+3),
∴PF=-m2-2m+3-m-3=-m2-3m,
△PFG周長為:-m2-3m+(-m2-3m),
=-(+1)(m+)2+,
∴△PFG周長的最大值為:.
(3)點M有三個位置,如圖所示的M1、M2、M3,都能使△ABM的面積等于△ABD的面積.
此時DM1∥AB,M3M2∥AB,且與AB距離相等,
∵D(-1,4),
∴E(-1,2)、則N(-1,0)
∵y=x+3中,k=1,
∴直線DM1解析式為:y=x+5,
直線M3M2解析式為:y=x+1,
∴x+5=-x2-2x+3或x+1=-x2-2x+3,
∴x1=-1,x2=-2,x3=,x4=,
∴M1(-2,3),M2(,),M3(,).
科目:初中數學 來源: 題型:
【題目】正方形網格中,小格的頂點叫做格點。小華按下列要求作圖:①在正方形網格的三條不同的實線上各取一個格點,使其中任意兩點不在同一條實線上;②連結三個格點,使之構成直角三角形。小華在左邊的正方形網格中作出了Rt⊿ABC。請你按照同樣的要求,在右邊的兩個正方形網格中各畫出一個直角三角形,并使三個網格中的直角三角形互不全等。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國家游泳中心——“水立方”是北京2008年奧運會場館之一,它的外層膜的展開面積約為260000平方米,將260000用科學記數法表示應為( )
A. 2.6×105 B. 26×104 C. 0.26×102 D. 2.6×106
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知a、b、c是三角形的三邊長,如果滿足(a﹣5)2+|b﹣12|+c2﹣26c+169=0,則三角形的形狀是( )
A.底與邊不相等的等腰三角形
B.等邊三角形
C.鈍角三角形
D.直角三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列方程中,關于x 的一元二次方程是( )
A. x—2x—3=0 B. x- 2y- 1=0
C. x-x(x+3)=0 D. ax+bx +c=0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為緩解“停車難”的問題,某單位擬建造地下停車庫,建筑設計師提供了該地下停車庫的設計示意圖,其中,,,在上,.按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛入,請你根據該圖計算的長,并標明限制高度.(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)(精確到0.1m)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com