【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,A,B為格點(diǎn)

(Ⅰ)AB的長等于__

(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點(diǎn)C,使得CA=CB且ABC的面積等于,并簡要說明點(diǎn)C的位置是如何找到的__________________

【答案】 取格點(diǎn)P、N(SPAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點(diǎn)C,點(diǎn)C即為所求.

【解析】

Ⅰ)利用勾股定理計(jì)算即可;

Ⅱ)取格點(diǎn)P、N(SPAB=),作直線PN,再證=作線段AB的垂直平分線EFPN于點(diǎn)C,點(diǎn)C即為所求.

解:(Ⅰ)AB= =,

故答案為

Ⅱ)如圖取格點(diǎn)P、N(使得SPAB=),作直線PN,再證=作線段AB的垂直平分線EFPN于點(diǎn)C,點(diǎn)C即為所求.

故答案為:取格點(diǎn)P、N(SPAB=),作直線PN,再證=作線段AB的垂直平分線EFPN于點(diǎn)C,點(diǎn)C即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,∠ACB=90°,AC=BC=6M點(diǎn)在邊AC上,且CM=2,過M點(diǎn)作AC的垂線交AB邊于E點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC邊向M點(diǎn)運(yùn)動(dòng),速度為1個(gè)單位/秒,當(dāng)動(dòng)點(diǎn)P到達(dá)M點(diǎn)時(shí),運(yùn)動(dòng)停止.連接EPEC,設(shè)運(yùn)動(dòng)時(shí)間為t.在此過程中:

1)當(dāng)t=1時(shí),求EP的長度;

2)當(dāng)t為何值時(shí),△EPC是等腰三角形?

3)如圖2,若點(diǎn)N是線段ME上一點(diǎn),且MN=3,點(diǎn)Q是線段AE上一動(dòng)點(diǎn),連接PQ、PN、NQ得到△PQN,請直接寫出△PQN周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△是等邊三角形,的中點(diǎn),,垂足為點(diǎn),,下列結(jié)論錯(cuò)誤的是( )

A.30°B.

C.的周長為10D.的周長為9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)形結(jié)合是解決數(shù)學(xué)問題的重要思想方法,借助圖形可以對很多數(shù)學(xué)問題進(jìn)行直觀推導(dǎo)和解釋. 如圖1,有足夠多的A類、C類正方形卡片和B類長方形卡片. 用若干張A類、B類、C類卡片可以拼出如圖2的長方形,通過計(jì)算面積可以解釋因式分解:

1)如圖3,用1A類正方形卡片、4B類長方形卡片、3C類正方形卡片,可以拼出以下長方形,根據(jù)它的面積來解釋的因式分解為________;

2)若解釋因式分解,需取A類、B類、C類卡片若干張(三種卡片都要取到),拼成一個(gè)長方形,請畫出相應(yīng)的圖形;

3)若取A類、B類、C類卡片若干張(三種卡片都要取到),拼成一個(gè)長方形,使其面積為,則m的值為________,將此多項(xiàng)式分解因式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已如點(diǎn)A1,1),B-11),C-1-2),D1,-2),把一根長為2019個(gè)單位長度沒有彈性的細(xì)線(線的相細(xì)忽略不計(jì))的一端固定在A處,并按的規(guī)律緊繞在四邊形ABCD的邊上,則細(xì)線的另一端所在位置的點(diǎn)的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生每天參加戶外活動(dòng)的情況,隨機(jī)抽查了一部分學(xué)生每天參加戶外活動(dòng)的時(shí)間情況,繪制出如下的統(tǒng)計(jì)圖和圖,請根據(jù)相關(guān)信息,解答下列問題;

(Ⅰ)在圖中,m的值為   ,表示“2小時(shí)”的扇形的圓心角為   度;

(Ⅱ)求統(tǒng)計(jì)的這組學(xué)生戶外運(yùn)動(dòng)時(shí)間的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,EFACF,DBACM,∠1=2,∠3=C

(1)求證:AB//MN

(2)若∠C=40°,∠MND=100°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC為等邊三角形,D為BC延長線上的一點(diǎn),CE平分ACD,CE=BD,求證:ADE為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2013年四川攀枝花12分)如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(1.0),C(0,﹣3).

(1)求拋物線的解析式;

(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)設(shè)拋物線的頂點(diǎn)為D,DEx軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得ADM是直角三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案