【題目】如圖,點D為圓O上一點,點C在直徑AB的延長線上,且∠CAD=∠BDC,過點A作⊙O的切線,交CD的延長線于點E.
(1)求證:CD是⊙O的切線;(2)若CB=3,CD=9,求ED的長.
【答案】(1)見解析;(2)ED=36.
【解析】
(1)連接OD,根據(jù)圓周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根據(jù)切線的判定推出即可;
(2)根據(jù)切線長定理求出AC,進而求得OC和OD,根據(jù)證得OCD∽△ECA,得到,求出EC,即可求得ED的長.
(1)證明:連接OD,
∵OD=OB,
∴∠DBA=∠BDO,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDB=∠CAD,
∴∠CDB+∠BDO=90°,
即OD⊥CE,
∵D為⊙O的一點,
∴直線CD是⊙O的切線;
(2)∵CD是⊙O的切線,
∴CD2=BCAC,
∵CB=3,CD=9,
∴92=3AC,
∴AC=27,
∴AB=AC﹣BC=27﹣3=24,
∵AB是圓O的直徑,
∴OD=OB=12,
∴OC=OB+BC=15,
∵過點A作的⊙O切線交CD的延長線于點E,
∴EA⊥AC,
∵OD⊥CE,
∴∠ODC=∠EAC=90°,
∵∠OCD=∠ECA,
∴△OCD∽△ECA,
∴,即,
∴EC=45,
∴ED=EC﹣CD=45﹣9=36.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中點,AD⊥AE.
(1)求證:AC2=CD·BC;
(2)過E作EG⊥AB,并延長EG至點K,使EK=EB.
①若點H是點D關(guān)于AC的對稱點,點F為AC的中點,求證:FH⊥GH;
②若∠B=30°,求證:四邊形AKEC是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=﹣2x+5分別與x軸,y軸交于點C、D,與反比例函數(shù)y=的圖象交于點A、B.過點A作AE⊥y軸于點E,過點B作BF⊥x軸于點F,連結(jié)EF;下列結(jié)論:①AD=BC;②EF∥AB;③四邊形AEFC是平行四邊形;④S△EOF:S△DOC=3:5.其中正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司用100萬元研發(fā)一種市場急需電子產(chǎn)品,已于當年投入生產(chǎn)并銷售,已知生產(chǎn)這種電子產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,設公司銷售這種電子產(chǎn)品的年利潤為s(萬元).
(1)請求出y(萬件)與x(元/件)的函數(shù)表達式;
(2)求出第一年這種電子產(chǎn)品的年利潤s(萬元)與x(元/件)的函數(shù)表達式,并求出第一年年利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某專賣店有A,B兩種商品.已知在打折前,買20件A商品和10件B商品用了400元;買30件A商品和20件B商品用了640元.A,B兩種商品打相同折以后,某人買100件A商品和200件B商品一共比不打折少花640元,計算打了多少折?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問題,當?shù)卣疀Q定修建一條高速公路.其中一段長為146米的山體隧道貫穿工程由甲乙兩個工程隊負責施工.甲工程隊獨立工作2天后,乙工程隊加入,兩工程隊又聯(lián)合工作了1天,這3天共掘進26米.已知甲工程隊每天比乙工程隊多掘進2米,按此速度完成這項隧道貫穿工程,甲乙兩個工程隊還需聯(lián)合工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以個單位/秒的速度勻速運動,連接PQ,設運動時間為t秒.
(1)求拋物線的解析式;
(2)當t為何值時,△APQ為直角三角形;
(3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當EF∥PQ時,求點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com