【題目】某地電話撥號(hào)入網(wǎng)有兩種收費(fèi)方式,用戶可以任選其一
A:計(jì)時(shí)制:0.05元/分,B:包月制:50元/月,此外,每一種上網(wǎng)時(shí)間都要收通信費(fèi)0.02元/分
(1)某用戶某月上網(wǎng)時(shí)間為x小時(shí),請(qǐng)寫出兩種收費(fèi)方式下該用戶應(yīng)該支付的費(fèi)用(用y表示)
(2)若甲用戶估計(jì)一個(gè)月上網(wǎng)時(shí)間為20小時(shí),乙用戶估計(jì)一個(gè)月上網(wǎng)時(shí)間為15小時(shí),各選哪一種收費(fèi)方式最合算?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相交于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D點(diǎn),連接CD.
(1)求證:∠A=∠BCD;
(2)若M為線段BC上一點(diǎn),試問當(dāng)點(diǎn)M在什么位置時(shí),直線DM與⊙O相切?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖小方格的邊長為1個(gè)單位。
(1)畫出坐標(biāo)系,使A、B的坐標(biāo)分別為(1,1)、(-2,0),并寫出點(diǎn)C的坐標(biāo);
(2)若將△ABC向右平移4個(gè)單位,再向上平移3個(gè)單位,得到,在圖中畫出;
(3)寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線,直線和直線、交于點(diǎn)和,點(diǎn)是直線上一動(dòng)點(diǎn).
圖1 圖2 圖3
(1)如圖1,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),,,之間存在什么數(shù)量關(guān)系?請(qǐng)你猜想結(jié)論并說明理由
(2)當(dāng)點(diǎn)在、兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)與點(diǎn)、不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請(qǐng)直接寫出,,之間的數(shù)量關(guān)系,不必寫理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明和父母一起開車到距家的景點(diǎn)旅游,出發(fā)前,汽車油箱內(nèi)儲(chǔ)油,當(dāng)行駛時(shí),發(fā)現(xiàn)油箱余油量為(假設(shè)行駛過程中汽車的耗油量是均勻的).
(1)這個(gè)變化過程中哪個(gè)是自變量?哪個(gè)是因變量?
(2)求該車平均每千米的耗油量,并寫出行駛路程與剩余油量的關(guān)系式;
(3)當(dāng)時(shí),求剩余油量的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,和的平分線交于AD邊上一點(diǎn)E,且,,則AB的長是( )
A. 2.5B. 3C. 4D. 2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面資料:
小明遇到這樣一個(gè)問題:如圖1,對(duì)面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,順次連接A1、B1、C1,得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個(gè)問題的:如圖2,連接A1C、B1A、C1B,因?yàn)?/span>A1B2AB,B1C2BC,C1A2CA,根據(jù)等高兩三角形的面積比等于底之比,所以2S△ABC2a,由此繼續(xù)推理,從而解決了這個(gè)問題.
(1)直接寫出S1 (用含字母a的式子表示).
請(qǐng)參考小明同學(xué)思考問題的方法,解決下列問題:
(2)如圖3,P為△ABC內(nèi)一點(diǎn),連接AP、BP、CP并延長分別交邊BC、AC、AB于點(diǎn)D、E、F,則把△ABC分成六個(gè)小三角形,其中四個(gè)小三角形面積已在圖上標(biāo)明,求△ABC的面積.
(3)如圖4,若點(diǎn)P為△ABC的邊AB上的中線CF的中點(diǎn),求S△APE與S△BPF的比值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com