【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=
(1)求BC的長(zhǎng);
(2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫作法),并求外接圓半徑.
【答案】(1)5;(2)AO=.
【解析】
(1)過點(diǎn)A作AE⊥BC于點(diǎn)E,根據(jù)三角函數(shù)的定義和特殊角的三角函數(shù)即可得出.
(2)作AB、AC的垂直平分線,交點(diǎn)O即為圓心,以0A為半徑作圓,即可得出△ABC的外接圓,根據(jù)sin∠ABC=sin∠AOK即可求解.
解:(1)如圖過點(diǎn)A作AE⊥BC于點(diǎn)E,
∵cosC=,
∴∠C=45°,
在Rt△ACE中,CE=ACcosC=1,
∴AE=CE=1,
在Rt△ABE中,tanB=,即,
∴BE=4AE=4,
∴BC=BE+CE=5.
(2)如圖,⊙O就是所求作的△ABC的外接圓.
∵∠AOC=2∠ABC,∠AOK=∠COK,∴∠ABC=∠AOK,
∵sin∠AOK=sin∠ABC=
由(1)可知AB=
∴
∴AO=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O經(jīng)過四邊形ABCD的B、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請(qǐng)直接寫出θ、α和β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線
y=-x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE
(1)試證明△AEF∽△BEC;
(2)如圖,過 C 點(diǎn)作 CH⊥AD 于 H,試探究線段 DH 與 BF 的數(shù)量關(guān)系,并說明理由;
(3)若 AD=1,CD=5,試求出 BE 的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y1=x2﹣2x+c的部分圖象如圖1所示:
(1)確定c的取值范圍;
(2)若拋物線經(jīng)過點(diǎn)(0,﹣1),試確定拋物線y1=x2﹣2x+c的解析式;
(3)若反比例函數(shù)y2=的圖象經(jīng)過(2)中拋物線上點(diǎn)(1,a),試在圖2所示直角坐標(biāo)系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象寫出當(dāng)y1>y2時(shí),對(duì)應(yīng)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的大致圖象如圖所示,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A.函數(shù)有最小值B.圖象對(duì)稱軸是直線x=
C.當(dāng)x<,y隨x的增大而減小D.當(dāng)-1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園空地上有一面墻,長(zhǎng)度為4米,為了創(chuàng)建“美麗校園”,學(xué)校決定借用這面墻和20米的圍欄圍成一個(gè)矩形花園,設(shè)長(zhǎng)為米,矩形花園的面積為平方米.
(1)如圖1,若所圍成的矩形花園邊的長(zhǎng)不得超出這面墻,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)在(1)的條件下,當(dāng)為何值時(shí),矩形花園的面積最大,最大值是多少?
(3)如圖2,若圍成的矩形花園的邊的長(zhǎng)可超出這面墻,求圍成的矩形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】共享單車逐漸成為市民喜愛的“綠色出行” 方式之一,今年國(guó)慶假期某一天,濟(jì)川中學(xué)初三數(shù)學(xué)社團(tuán)的同學(xué)們隨機(jī)調(diào)查了一個(gè)社區(qū),將這天部分出行市民使用共享單車的數(shù)據(jù)整理成如下統(tǒng)計(jì)表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1) 這天部分出行市民使用共享單車次數(shù)的中位數(shù)是__________,眾數(shù)是__________
(2) 這天部分出行市民平均每人使用共享單車多少次?
(3) 若該社區(qū)這天有1500人出行,請(qǐng)你估計(jì)這天使用共享單車次數(shù)在3次以上(含3 次)的市民有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形,點(diǎn)在軸上,直線經(jīng)過點(diǎn),菱形的面積是. 若反比例函數(shù)的圖象經(jīng)過點(diǎn),則此反比例函數(shù)表達(dá)式中的為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com