【題目】已知⊙O經(jīng)過四邊形ABCD的B、D兩點,并與四條邊分別交于點E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請直接寫出θ、α和β之間的數(shù)量關(guān)系.
【答案】(1)證明見解析;(2)α+β+θ =180°
【解析】
(1)根據(jù)圓周角定理及同弧所對的圓周角相等,得到∠EDF=∠HDG,然后利用外角的性質(zhì)等量代換求證;
(2)利用外角性質(zhì)及圓內(nèi)接四邊形對角互補(bǔ)求解.
(1) 連接DF、DG
∵BD是⊙O的直徑
∴∠DFB=∠DGB =90°,
∵
∴∠EDF=∠HDG,
∵∠DFB=∠EDF+∠A
∠DGB=∠HDG+∠C,
∴∠A=∠C
(2)
連接DF,BH
∵
∴∠ADF=∠HBG=θ
又∵∠DFB=∠A+∠ADF,∠DHB=∠C+∠HBG
∴∠DFB+∠DHB=∠A+∠ADF+∠C+∠HBG
根據(jù)圓內(nèi)接四邊形對角互補(bǔ),可得
∴α+β+θ =180°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的紙箱里有分別標(biāo)有漢字“熱”“愛”“祖”“國”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先搖勻再摸球.
(1)若從中任取一個球,求摸出球上的漢字剛好是“國”字的概率.
(2)小紅從中任取球,不放回,再從中任取一球,請用樹狀圖或列表法,求小紅取出的兩個球上的漢字恰好能組成“愛國”或“祖國”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于點,對稱軸為直線,與軸交點在和之間(包含這兩個點)運動,有如下四個結(jié)論:
①拋物線與軸的另一個交點是;
②點,在拋物線上,且滿足,則;
③常數(shù)項的取值范圍是;
④系數(shù)的取值范圍是.
上述結(jié)論中所有正確結(jié)論的序號是( )
A.①②③B.②③④C.①③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x+與x軸交于A,B兩點,與y軸交于點C,點D為拋物線的頂點,拋物線的對稱軸與直線AC交于點E.
(1)若點P為直線AC上方拋物線上的動點,連接PC,PE,當(dāng)△PCE的面積S△PCE最大時,點P關(guān)于拋物線對稱軸的對稱點為點Q,此時點T從點Q開始出發(fā),沿適當(dāng)?shù)穆窂竭\動至y軸上的點F處,再沿適當(dāng)?shù)穆窂竭\動至x軸上的點G處,最后沿適當(dāng)?shù)穆窂竭\動至直線AC上的點H處,求滿足條件的點P的坐標(biāo)及QF+FG+AH的最小值.
(2)將△BOC繞點B順時針旋轉(zhuǎn)120°,邊BO所在直線與直線AC交于點M,將拋物線沿射線CA方向平移個單位后,頂點D的對應(yīng)點為D′,點R在y軸上,點N在坐標(biāo)平面內(nèi),當(dāng)以點D′,R,M,N為頂點的四邊形是菱形時,請直接寫出N點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=5cm,BC=10cm,點P從點A出發(fā),沿AB邊向點B以每秒1cm的速度移動,同時點Q從點B出發(fā)沿BC邊向點C以每秒2cm的速度移動,P、Q兩點在分別到達(dá)B、C兩點時就停止移動,設(shè)兩點移動的時間為t秒,解答下列問題:
(1)如圖1,當(dāng)t為幾秒時,△PBQ的面積等于4cm2?
(2)如圖2,以Q為圓心,PQ為半徑作⊙Q.在運動過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間,則下列結(jié)論:①b=2a;②c﹣a=n;③拋物線另一個交點(m,0)在﹣2到﹣1之間;④當(dāng)x<0時,ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有兩個不相等的實數(shù)根其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點M為拋物線上一動點,連接MA、MB,當(dāng)點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點,,.
(1)畫出繞點逆時針旋轉(zhuǎn)后的圖形,并寫出點的坐標(biāo);
(2)將(1)中所得先向左平移4個單位,再向上平移2個單位得到,畫出,并寫出點的坐標(biāo);
(3)若可以看作繞某點旋轉(zhuǎn)得來,直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=
(1)求BC的長;
(2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫作法),并求外接圓半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com