【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①b=2a;②c﹣a=n;③拋物線另一個(gè)交點(diǎn)(m,0)在﹣2到﹣1之間;④當(dāng)x<0時(shí),ax2+(b+2)x<0;⑤一元二次方程ax2+(b﹣)x+c=0有兩個(gè)不相等的實(shí)數(shù)根其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
①根據(jù)拋物線的對稱軸公式即可求解;②當(dāng)x等于1時(shí),y等于n,再利用對稱軸公式即可求解;③根據(jù)拋物線的對稱性即可求解;④根據(jù)拋物線的平移即可求解;⑤根據(jù)一元二次方程的判別式即可求解.
①因?yàn)閽佄锞的對稱軸為x=1,
即﹣=1,所以b=﹣2a,
所以①錯(cuò)誤;
②當(dāng)x=1時(shí),y=n,
所以a+b+c=n,因?yàn)?/span>b=﹣2a,
所以﹣a+c=n,
所以②正確;
③因?yàn)閽佄锞的頂點(diǎn)坐標(biāo)為(1,n),
即對稱軸為x=1,
且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,
所以拋物線另一個(gè)交點(diǎn)(m,0)在﹣2到﹣1之間;
所以③正確;
④把拋物線y=ax2+bx+c(a≠0)圖象向下平移c個(gè)單位后圖象過原點(diǎn),
即可得拋物線y=ax2+bx(a≠0)的圖象,
畫出直線y=-2x,
根據(jù)圖象可知:
當(dāng)x<0時(shí),ax2+bx<﹣2x,
即ax2+(b+2)x<0.
所以④正確;
⑤一元二次方程ax2+(b﹣)x+c=0
△=(b﹣)2﹣4ac
因?yàn)楦鶕?jù)圖象可知:a<0,c>0,
所以﹣4ac>0,
所以△=(b﹣)2﹣4ac>0
所以一元二次方程ax2+(b﹣)x+c=0有兩個(gè)不相等的實(shí)數(shù)根.
所以⑤正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)
過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,對角線、交于點(diǎn),過點(diǎn)作,交延長線于點(diǎn),交于點(diǎn),若,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程
(1)(x﹣2)2=1;
(2)x(x﹣6)=6;
(3)x2+4x﹣32=0;
(4)x(x+4)=﹣3(x+4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O經(jīng)過四邊形ABCD的B、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請直接寫出θ、α和β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點(diǎn)且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫做該點(diǎn)的“特征線”.例如,點(diǎn)M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點(diǎn)B在第一象限,A,C分別在x軸和y軸上,拋物線y=(x﹣a)2+b經(jīng)過B,C兩點(diǎn),頂點(diǎn)D在正方形內(nèi)部.若點(diǎn)D有一條特征線是y=x+2,則此拋物線的表達(dá)式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形花草園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為16米(如圖所示),設(shè)這個(gè)花草園垂直于墻的一邊長為x米.
(1)若花草園的面積為100平方米,求x;
(2)若平行于墻的一邊長不小于10米,這個(gè)花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房價(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間 每天的房價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房價(jià)不得高于340元.設(shè)每個(gè)房間的房價(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的大致圖象如圖所示,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A.函數(shù)有最小值B.圖象對稱軸是直線x=
C.當(dāng)x<,y隨x的增大而減小D.當(dāng)-1<x<2時(shí),y>0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com