【題目】問(wèn)題發(fā)現(xiàn):如圖1,△ABC是等邊三角形,點(diǎn)D是邊AD上的一點(diǎn),過(guò)點(diǎn)DDEBCACE,則線段BDCE有何數(shù)量關(guān)系?

拓展探究:如圖2,將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角α0°<α360°),上面的結(jié)論是否仍然成立?如果成立,請(qǐng)就圖中給出的情況加以證明.

問(wèn)題解決:如果△ABC的邊長(zhǎng)等于2,AD2,直接寫(xiě)出當(dāng)△ADE旋轉(zhuǎn)到DEAC所在的直線垂直時(shí)BD的長(zhǎng).

【答案】問(wèn)題發(fā)現(xiàn):BDCE;拓展探究:結(jié)論仍然成立,見(jiàn)解析;問(wèn)題解決:BD的長(zhǎng)為22

【解析】

問(wèn)題發(fā)現(xiàn):如圖1,由平行線分線段成比例定理可得BDCE;

拓展探究:如圖2,證明BAD≌△CAE,可得BDCE

問(wèn)題解決:分兩種情況:①如圖3,在直角三角形中,根據(jù)30°角所對(duì)的直角邊等于斜邊的一半求出DG1,由勾股定理求出AG,得出BG,從而計(jì)算出BD的長(zhǎng).

②如圖4,求EF的長(zhǎng)和CF的長(zhǎng),根據(jù)勾股定理在RtEFC中求EC的長(zhǎng),所以BDEC2

: 問(wèn)題發(fā)現(xiàn):如圖1,BD=CE,理由是

ABC是等邊三角形,

AB=AC,

DEBC,

BD=CE,
拓展探究:結(jié)論仍然成立,如圖2,
由圖1,ADE是等邊三角形,

AD=AE,
由旋轉(zhuǎn)得∠BAD=CAE,BADCAE,(旋轉(zhuǎn)的性質(zhì))
BD=CE,
問(wèn)題解決:當(dāng)ADE旋轉(zhuǎn)到DEAC所在的直線垂直時(shí),設(shè)垂足為點(diǎn)F,此時(shí)有兩種情況:

①如圖3,

ADE是等邊三角形,AFDE,

∴∠DAF=EAF=30°,
∴∠BAD=30°,
過(guò)DDGAB,垂足為G,

AD=2,
DG=1,AG=,

AB=2,
BG=AB-AG=,
BD=2(勾股定理),
②如圖4,

同理得BADCAE,

BD=CE,
∵△ADE是等邊三角形,

∴∠ADE=60°,
AD=AE,DEAC,
∴∠DAF=EAF=30°,
EF=FD=AD=1,

AF=,
CF=AC+CF=2+=3,

RtEFC,EC=,

BD=EC=2.

綜上所述,BD的長(zhǎng)為22.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(初步認(rèn)識(shí))

1)如圖,將ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到MNO,連接AM、BM

求證AOM∽△BON

(拓展延伸)

2)如圖,在等邊ABC中,點(diǎn)EABC內(nèi)部,且滿足AE2BE2CE2,用直尺和圓規(guī)作出所有的點(diǎn)E(保留作圖的痕跡,不寫(xiě)作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)yax2+bx+ca≠0)的圖象于x軸的交點(diǎn)坐標(biāo)分別為(x10),(x20),且x1x2,圖象上有一點(diǎn)Mx0,y0)在x軸下方,對(duì)于以下說(shuō)法:①b24ac0xx0是方程ax2+bx+cy0的解③x1x0x2ax0x1)(x0x2)<0其中正確的是( 。

A.①③④B.①②④C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大眾服裝店今年4月用4000元購(gòu)進(jìn)了一款襯衣若干件,上市后很快售完,服裝店于5月初又購(gòu)進(jìn)該款襯衣,進(jìn)貨量比第一批增加了20%,由于第二批襯衣進(jìn)貨時(shí)價(jià)格比第一批襯衣進(jìn)貨時(shí)價(jià)格提高了20元,結(jié)果第二批襯衣進(jìn)貨用了6000

1)第一批襯衣進(jìn)貨時(shí)價(jià)格是多少?

2)第一批襯衣售價(jià)為120/件,為保證第二批襯衣的利潤(rùn)率不低于第一批襯衣的利潤(rùn)率,那么第二批襯衣每件售價(jià)至少是多少元?(提示:利潤(rùn)=售價(jià)﹣成本,利潤(rùn)率=利潤(rùn)÷成本×100%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量小山上方某信號(hào)塔PQ的高度,他們?cè)?/span>A處測(cè)得信號(hào)塔頂端P的仰角為45°,信號(hào)塔低端Q的仰角為31°,沿水平地面向前走100米到處,測(cè)得信號(hào)塔頂端P的仰角為68°.求信號(hào)塔PQ的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°≈ 0.93,cos68° ≈ 0.37,tan68° ≈ 2.48,tan31° ≈ 0.60,sin31° ≈ 0.52,cos31°≈0.86)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點(diǎn)B的坐標(biāo)為(1,0).拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABDC,ABAD,對(duì)角線AC,BD交于點(diǎn)OAC平分BAD,過(guò)點(diǎn)CCEABAB的延長(zhǎng)線于點(diǎn)E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若ABBD=2,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)興趣小組的同學(xué)測(cè)量一架無(wú)人飛機(jī)P的高度,如圖,AB兩個(gè)觀測(cè)點(diǎn)相距,在A處測(cè)得P在北偏東71°方向上,同時(shí)在B處測(cè)得P在北偏東35°方向上.求無(wú)人飛機(jī)P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,sin71°0.95tan71°2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,王老師讓同學(xué)們對(duì)給定的正方形ABCD,如圖.建立合適的平面直角坐標(biāo)系,并表示出各頂點(diǎn)的坐標(biāo).下面是4名同學(xué)表示各頂點(diǎn)坐標(biāo)的結(jié)果:

甲同學(xué):A0,1),B00),C10),D11);

乙同學(xué):A00),B0,-1),C1,-1),D1,0);

丙同學(xué):A1,0),B1,-2),C3,-2),D3,0);

丁同學(xué):A(-1,2),B(-10),C00),D0,2);

上述四名同學(xué)表示的結(jié)果中,四個(gè)點(diǎn)的坐標(biāo)都表示正確的同學(xué)是( )

A. 甲、乙、丙B. 乙、丙、丁C. 甲、丙D. 甲、乙、丙、丁

查看答案和解析>>

同步練習(xí)冊(cè)答案