【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記△ABM和△CDN的面積和為S,則四邊形MQNP的面積為( 。
A. S B. S C. S D. S
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長度相同,且斜邊BC與BE在同一直線上,AC與BD交于點O,連接CD.
求證:△CDO是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組想測量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長為12米,它的坡度i=1:.在離C點40米的D處,用測角儀測得大樓頂端A的仰角為37°,測角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有菱形OABC,點A的坐標(biāo)為(5,0),對角線OB、AC相交于點D,雙曲線y=(x>0)經(jīng)過AB的中點F,交BC于點E,且OBAC=40,有下列四個結(jié)論:
①雙曲線的解析式為y=(x>0);②直線OE的解析式為y=x;③tan∠CAO=;④AC+OB=6;其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D.
(1)求直線BC的解析式;
(2)如圖2,點P為直線BC上方拋物線上一點,連接PB、PC.當(dāng)△PBC的面積最大時,在線段BC上找一點E(不與B、C重合),使PE+BE的值最小,求點P的坐標(biāo)和PE+BE的最小值;
(3)如圖3,點G是線段CB的中點,將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為F.在拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為直角三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,于,平分,且于,與相交于點,于,交于,下列結(jié)論:①;②;③;④.其中正確的是( )
A.①②B.①③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,
(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度數(shù)
(2)寫出∠DAE與∠C-∠B的數(shù)量關(guān)系,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的學(xué)習(xí)生活,某班組織學(xué)生參觀某愛國主義教育基地,所聯(lián)系的旅行社收費標(biāo)準(zhǔn)如下:
活動結(jié)束后,該班共支付給該旅行社活動費用5600元,該班共有多少人參加這次活動?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com