【題目】隨著經濟水平的不斷提升,越來越多的人選擇到電影院去觀看電影,體驗視覺盛宴,并且更多的人通過淘票票,貓眼等網上平臺購票,快捷且享受更多優(yōu)惠,電影票價格也越來越便宜.2018年從網上平臺購買5張電影票的費用比在現場購買3張電影票的費用少10元,從網上平臺購買4張電影票的費用和現場購買2張電影票的費用共為190元.
(1)請問2018年在網上平臺購票和現場購票的每張電影票的價格各為多少元?
(2)2019年“元旦”當天,南坪上海城的“華誼兄弟影院”按照2018年在網上平臺購票和現場購票的電影票的價格進行銷售,當天網上和現場售出電影票總票數為600張.“元旦”假期剛過,觀影人數出現下降,于是該影院決定將1月2日的現場購票的價格下調,網上購票價格保持不變,結果發(fā)現現場購票每張電影票的價格每降價0.5元,則當天總票數比“元旦”當天總票數增加4張,經統計,1月2日的總票數中有通過網上平臺售出,其余均由電影院現場售出,且當天票房總收益為19800元,請問該電影院在1月2日當天現場購票每張電影票的價格下調了多少元?
【答案】(1)2018年在網上平臺購票和現場購票的每張電影票的價格分別為25元和45元;(2)1月2日當天現場購票每張電影票的價格下調了15元
【解析】
(1)根據網售影票單價×網售票數+現售影票單價×現售票數=總費用以及3張現售電影票費用-5張網售電影票費用=10元,這兩個等量關系建立并聯立二元一次方程組求解即可;
(2)設降m元,則用含有m的代數式間接表示出多賣出的影票有張,再根據每張實際現售影票收益×實際現售票影票張數=實際現售影票總收益建立一元二次方程并求解.
(1)設現場購買每張電影票為x元,網上購買每張電影票為y元.
依題意列二元一次方程組∵
經檢驗解得
(2)設1月2日該電影院影票現場售價下調m元,那么會多賣出張電影票.
依題意列一元二次方程:(45-m)[600×(1-)+]=19800-25×600(1-)
整理得:8m2-120m=0
m(8m-120)=0
解得m1=0(舍去)m2=15
答:(1)2018年在網上平臺購票和現場購票的每張電影票的價格分別為25元和45元;(2)1月2日當天現場購票每張電影票的價格下調了15元.
科目:初中數學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據調查統計結果,繪制了不完整的統計圖.
請結合統計圖,回答下列問題:
(1)本次調查學生共 人, = ,并將條形圖補充完整;
(2)如果該校有學生2000人,請你估計該校選擇“跑步”這種活動的學生約有多少人?
(3)學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了弘揚我國古代數學發(fā)展的偉大成就,某校九年級進行了一次數學知識競賽,并設立了以我國古代數學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據獲獎情況繪制成如圖1和圖2所示的條形統計圖和扇形統計圖,并得到了獲“祖沖之獎”的學生成績統計表:
“祖沖之獎”的學生成績統計表:
分數分 | 80 | 85 | 90 | 95 |
人數人 | 4 | 2 | 10 | 4 |
根據圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數是多少,并將條形統計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數是多少分,眾數是多少分;
在這次數學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數字“”,“”和“2”,隨機摸出一個小球,把小球上的數字記為x放回后再隨機摸出一個小球,把小球上的數字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了方便學生在上下學期間安全過馬路,南岸區(qū)政府決定在南開(融僑)中學校門口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學生小劉想利用所學知識測量天橋頂棚距地面的高度.天橋入口A點有一臺階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺階CD,EF,其長度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點測得頂棚頂端G的仰角為37°,請根據以上數據,幫小劉計算出頂端G點距地面高度為( 。m.(結果保留一位小數,參考數據:≈1.73,sin37°≈,cos37°≈,tan37°≈)
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調查,利用所得數據繪成如圖統計圖表:
頻數分布表
身高分組 | 頻數 | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a=____,b=____;
(2)補全頻數分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCD的A、C兩點測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG為__米(結果精確到1m).
參考數據:sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com