【題目】如圖,在□ABCD中,E,F是對角線AC上的兩點且AE=CF,在①BE=DF;②AB=DE;③BE∥DF;④四邊形EBFD為菱形;⑤S△ADE=S△ABE;⑥AF=CE,這些結(jié)論中正確的是_____.
【答案】①③⑤⑥
【解析】
連接BD,交AC于點O,過D作DM⊥AC于點M,過B作BN⊥AC于N,推出OE=OF,得出平行四邊形BEDF,求出BN=DM,即可判斷各個條件.
連接BD,交AC于點O,過D作DM⊥AC于點M,過B作BN⊥AC于N,
∵四邊形ABCD是平行四邊形
∴DO=BO,OA=OC
∵AE=CF
∴OE=OF
∴四邊形BEDF是平行四邊形
∴BE=DF,BE∥DF,
∴①③正確;④錯誤
②∵根據(jù)已知不能推出AB=DE,∴②錯誤;
⑤∵BN⊥AC,DM⊥AC
∴∠BNO=∠DMO=90°
在△BNO和△DMO中
∴△BNO≌△DMO(AAS)
∴BN=DM
∵
∴
∴⑤正確
⑥∵AE=CF
∴AE+EF=CF+EF
∴AF=CE
∴⑥正確;
綜上答案為①③⑤⑥.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,中,,于點,,.
(1)求,的長
(2)若點是射線上的一個動點,作于點,連結(jié).
①當點在線段上時,若是以為腰的等腰三角形,請求出所有符合條件的的長.
②設(shè)交直線于點,連結(jié),,若,則的長為______________.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E,H分別在AB,AC上,已知BC=40cm,AD=30cm,求這個正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由8個大小相同的小正方體組合成的簡單幾何體.
(1)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖;(邊框線加粗畫出,并涂上陰影)
(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的俯視圖和主視圖不變,那么請在下列網(wǎng)格圖中畫出添加小正方體后所得幾何體所有可能的左視圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(-2,6),且與x軸交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標是1.
(1)求此一次函數(shù)的解析式;
(2)請直接寫出不等式(k-3)x+b>0的解集;
(3)設(shè)一次函數(shù)y=kx+b的圖象與y軸交于點M,點N在坐標軸上,當△CMN是直角三角形時,請直接寫出所有符合條件的點N的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,,,等腰的頂點在第二象限,交軸于點.
(1)如圖1,求證;
(2)如圖2,點在的延長線上,若點坐標為,以為直角邊在左側(cè)作等腰,連接交于.
①求點的坐標;
②求證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對
他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);
(2)分別計算甲、乙六次測試成績的方差;
(3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加全國比賽更合適,請說明理由.
(計算方差的公式:s2=[])
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com