【題目】如下圖所示,在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)度,得到,交于點(diǎn),分別交、于點(diǎn)、,下列結(jié)論:
①,②,③,④,⑤.
其中一定正確的有( )
A.①②④B.①③⑤C.②③⑤D.③④⑤
【答案】B
【解析】
利用旋轉(zhuǎn)的性質(zhì)得BA=BC=BA1=BC1,∠ABA1=∠CBC1=α,∠C=∠C1,則利用三角形的內(nèi)角和可得到∠CDF=∠C1BF=α,于是可對(duì)①進(jìn)行判斷;再證明△ABE≌△CBF得到BE=BF,所以A1E=CF,則可對(duì)③進(jìn)行判斷;由于∠CDF=α,而∠C不一定等于α,則可對(duì)②進(jìn)行判斷;然后證明△A1BF≌△CBE,則可對(duì)④⑤進(jìn)行判斷.
解:∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,
∴BA=BC=BA1=BC1,∠ABA1=∠CBC1=α,∠C=∠C1,
而∠CFD=∠C1FB,
∴∠CDF=∠C1BF=α,所以①正確;
∵∠A=∠A1=∠C1,BA=BC1,∠ABE=∠C1BF,
∴△ABE≌△CBF,
∴BE=BF,
∴A1E=CF,所以③正確;
∵∠CDF=α,而∠C不一定等于α,
∴DF與FC不一定相等,所以②錯(cuò)誤;
∵BA1=BC,∠A1BF=∠CBE,BF=BE,
∴△A1BF≌△CBE,
∴A1F=CE,所以④錯(cuò)誤,⑤正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)分別為,,.
(1)畫出關(guān)于點(diǎn)O成中心對(duì)稱的;
(2)以點(diǎn)A為位似中心,將放大為原來的2倍,得到,請(qǐng)?jiān)诘诙笙迌?nèi)畫出;
(3)直接寫出以點(diǎn),,為頂點(diǎn),以為一邊的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場管理費(fèi)5元,未來一個(gè)月按30天計(jì)算,這款商品將開展“每天降價(jià)1元”的促銷活動(dòng),即從第一天開始每天的單價(jià)均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第x天且x為整數(shù)的銷售量為y件.
直接寫出y與x的函數(shù)關(guān)系式;
設(shè)第x天的利潤為w元,試求出w與x之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費(fèi)200元(含200元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)九折、八折、七折區(qū)域,顧客就可以獲得此項(xiàng)優(yōu)惠,如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)某顧客正好消費(fèi)220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?
(2)某顧客消費(fèi)中獲得了轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤的機(jī)會(huì),實(shí)際付費(fèi)168元,請(qǐng)問他消費(fèi)所購物品的原價(jià)應(yīng)為多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題9分)如圖,是的直徑,是上一點(diǎn),連接.過點(diǎn)作的切線,交的延長線于點(diǎn),在上取一點(diǎn),使,連接,交于點(diǎn).請(qǐng)補(bǔ)全圖形并解決下面的問題:
(1)求證:;
(2)如果,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船在A處測得燈塔P在船的北偏東30°方向,輪船沿著北偏東60°方向航行16km后到達(dá)B處,這時(shí)燈塔P在船的北偏西75°方向.則燈塔P與B之間的距離等于___________km(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
據(jù)此判斷下列等式成立的是 (寫出所有正確的序號(hào))
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲、乙、丙三人組成的籃球訓(xùn)練小組,他們?nèi)酥g進(jìn)行互相傳球練習(xí),籃球從一個(gè)人手中隨機(jī)傳到另外一個(gè)人手中計(jì)作傳球一次,共連續(xù)傳球三次.
(1)若開始時(shí)籃球在甲手中,則經(jīng)過第一次傳球后,籃球落在丙的手中的概率是 ;
(2)若開始時(shí)籃球在甲手中,求經(jīng)過連續(xù)三次傳球后,籃球傳到乙的手中的概率.(請(qǐng)用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,E是AB邊上一點(diǎn),且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個(gè)數(shù)是( 。
A.3
B.4
C.1
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com